最近在学习和了解光计算的相关内容,对于以MZI(马赫-曾德尔干涉仪,Mach–Zehnder interferometers)为基础的光计算来说,利用多个MZI(来配置得到任意的酉矩阵是非常重要与基础的内容。但对于一名工科本科生来说,自己对于酉矩阵的认识和理解非常匮乏,于是在这里想把自己所学习到的相关知识进行整理汇总以有助于自己的学习。
定义
若一个的复数矩阵
满足:
,则称
为酉矩阵(Unitary Matrix),又译作幺正矩阵、么正矩阵。根据定义也不难证明
必为方阵(设
为
的复数矩阵,根据定义有
,即
,即
为方阵)。
事实上,对于酉矩阵还有一种等价定义,即对于一个的复数矩阵
,如果它的列向量构成一个标准正交向量集(orthonormal set of vectors),那么它也为酉矩阵。
性质
1. 从酉矩阵的第二种定义可以不难看出,当一个酉矩阵中的所有元素都为实数的时候,其实它也就是一个实正交矩阵。
2. 两个酉矩阵相乘(维数相同)依然是酉矩阵。
证明:设有两个维数相同的酉矩阵,
,则对于新的矩阵
来说,有
,同理可知
,即证。
3. 对于一个酉矩阵来说,它的共轭转置所得到的矩阵依然是一个酉矩阵,并且与它的逆矩阵相同,即。
说明
以上只是我个人学习中所需要掌握的,既不全面也不深刻,有问题也希望大家能够不吝指正。内容随需添加。