酉矩阵基础知识

最近在学习和了解光计算的相关内容,对于以MZI(马赫-曾德尔干涉仪,Mach–Zehnder interferometers)为基础的光计算来说,利用多个MZI(来配置得到任意的酉矩阵是非常重要与基础的内容。但对于一名工科本科生来说,自己对于酉矩阵的认识和理解非常匮乏,于是在这里想把自己所学习到的相关知识进行整理汇总以有助于自己的学习。

定义

若一个n\times n的复数矩阵U满足:UU^\dagger=U^\dagger U=I_n,则称U酉矩阵(Unitary Matrix),又译作幺正矩阵么正矩阵。根据定义也不难证明U必为方阵(设Um\times n的复数矩阵,根据定义有I_m=I_n,即m=n,即U为方阵)。

事实上,对于酉矩阵还有一种等价定义,即对于一个n\times n的复数矩阵U,如果它的列向量构成一个标准正交向量集(orthonormal set of vectors),那么它也为酉矩阵。

性质

1. 从酉矩阵的第二种定义可以不难看出,当一个酉矩阵中的所有元素都为实数的时候,其实它也就是一个实正交矩阵

2. 两个酉矩阵相乘(维数相同)依然是酉矩阵

证明:设有两个维数相同的酉矩阵AB,则对于新的矩阵M=AB来说,有MM^\dagger=AB(AB)^\dagger=ABB^\dagger A^\dagger=I,同理可知M^\dagger M=I,即证。

3. 对于一个酉矩阵来说,它的共轭转置所得到的矩阵依然是一个酉矩阵,并且与它的逆矩阵相同,即U^{-1}=U^\dagger

说明

以上只是我个人学习中所需要掌握的,既不全面也不深刻,有问题也希望大家能够不吝指正。内容随需添加。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值