大模型基础教程:一图尽览大模型知识点!

近年来,人工智能技术在全球范围内取得了显著的成果,特别是在计算机视觉、自然语言处理、语音识别等领域。这些成果的取得离不开大规模预训练模型的支撑。大模型通过在海量数据上进行预训练,能够捕捉到数据的深层次特征,从而在各类任务中取得优异的表现。如今,大模型已成为人工智能发展的重要方向,为各行各业带来了前所未有的变革。

大模型的概念与分类

大模型,顾名思义,是指参数规模较大的预训练模型。这些模型通常具有数十亿甚至数千亿个参数,需要在大量硬件资源上进行训练。大模型通过对数据进行分布式表示,能够捕捉到数据中的复杂关系,提高模型在各类任务中的泛化能力。

根据应用场景和任务类型,大模型可分为以下几类:

(1)通用大模型:如GPT、BERT等,能够处理多种类型的任务,如文本生成、文本分类、机器翻译等。

(2)领域特定大模型:针对特定领域,如计算机视觉领域的Transformer、自然语言处理领域的XLNet等。

(3)多模态大模型:能够处理多种模态的数据,如图像、文本、语音等,如CLIP、DALL-E等。

大模型的发展历程

  1. 早期探索:20世纪90年代,深度学习技术逐渐兴起,研究者们开始探索大规模神经网络模型。

  2. 2012年,AlexNet模型的提出,标志着深度学习在计算机视觉领域的突破。

  3. 2018年,BERT模型的提出,开启了自然语言处理领域的大模型时代。

  4. 2020年,GPT-3模型的发布,将大模型参数规模推向千亿级别,引发了广泛关注。

大模型的技术特点

  1. 参数规模大:大模型具有数十亿甚至千亿级别的参数,能够捕捉到数据中的深层次特征。

  2. 训练数据量大:大模型通常在数百GB甚至TB级别的数据上进行预训练,提高了模型的泛化能力。

  3. 计算资源需求高:大模型训练过程中需要大量计算资源,如GPU、TPU等。

  4. 模型泛化能力强:大模型在各类任务中表现出色,具有较强的泛化能力。

大模型的应用场景

  1. 自然语言处理:大模型在文本生成、文本分类、机器翻译等任务中取得了显著成果。

  2. 计算机视觉:大模型在图像分类、目标检测、图像生成等任务中表现出色。

  3. 语音识别:大模型在语音识别、语音合成等任务中取得了突破性进展。

  4. 多模态任务:大模型能够处理多种模态的数据,如图像描述生成、视频分类等。

大模型带来的机遇与挑战

  1. 机遇:大模型为人工智能技术发展提供了新方向,有望在更多领域实现突破。大模型具有强大的泛化能力,有助于降低人工智能应用的开发成本。

  2. 挑战:大模型可能导致数据隐私泄露,需要加强对数据安全的保护。大模型训练过程中计算资源需求高,能耗大,需要解决算力不足、能耗过高的问题。

大模型作为人工智能领域的重要研究方向,正引领着我国人工智能产业迈向新的发展阶段。面对大模型带来的机遇与挑战,我们需要加强技术创新,优化模型结构,提高计算效率,确保数据安全,为我国人工智能产业的发展贡献力量。

大模型相关技术项目发展很快,层出不穷,学习大模型,需要抓住其基础。本系列给了一个大模型的基础教程,包括词向量、分析模型、序列模型、注意力模型、Transformer结构等,能够快速入门。

-END-


👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

好的,用户现在问的是希望得到一个数据分析师助理可以实际参与科技有限公司项目的例子。首先,我需要回顾一下之前的对话历史,看看有没有相关的信息可以参考。之前用户询问了AB测试在软件测试中的应用,我详细介绍了不同场景、实施流程以及注意事项,还举了实例。现在用户的问题转向数据分析师助理的实际项目参与,可能需要一个具体的案例来说明。 首先,我需要确定用户的需求。他们可能是一名正在学习数据分析的学生,或者刚入行的新人,想了解在实际工作中如何应用所学技能。因此,例子需要具体、可操作,并且涵盖数据分析的关键步骤,比如数据清洗、分析、可视化、报告等。同时,可能需要结合科技公司的常见项目类型,比如用户行为分析、产品优化、市场策略等。 接下来,我应该考虑科技公司中数据分析师助理可能参与的项目类型。比如用户画像构建、销售预测、A/B测试结果分析、运营优化等。选择用户画像构建作为例子可能比较合适,因为这是一个常见的项目,能够展示数据处理的各个阶段,并且结果对产品、市场团队都有直接帮助。 然后,需要确定例子的结构。应该包括项目背景、助理的具体职责、使用的工具和技术、成果输出以及经验总结。这样用户能清晰看到每个阶段的任务和所需的技能。例如,项目背景可以是一个电商平台希望提升复购率,数据分析师助理负责处理数据、分析用户行为,并输出报告。 在职责部分,需要细化到数据清洗、特征工程、分析模型构建、可视化等具体任务。同时,使用Python、SQL、Tableau等工具是行业标准,应该提到。成果方面,可以包括用户分层报告、高价用户特征、推荐策略建议等,这样能体现实际应用价。 还需要考虑用户可能关心的点,比如如何与团队协作,如何处理数据中的问题,如何验证分析结果的有效性。例如,在数据清洗阶段可能会遇到缺失或异常,助理需要学习如何处理这些问题;在特征工程中需要与产品经理沟通,确保选取的特征符合业务需求。 最后,总结部分需要强调通过这样的项目,助理能够积累哪些经验,比如工具使用、跨部门协作、数据驱动决策的意识等。这样不仅回答了用户的问题,还为他们提供了职业发展的参考。 需要确保整个例子真实可靠,步骤清晰,并且语言简洁易懂。避免使用过多专业术语,但必要时解释清楚,比如p-value、RFM模型等,帮助用户理解概念。同时,结合之前的AB测试例子,可以提到在推荐策略中可能进行A/B测试来验证效果,保持回答的一致性。 以下是一个数据分析师助理在科技有限公司中可实际参与的项目案例,涵盖**真实工作场景**、**技术工具应用**和**成果交付**全流程: --- ### **项目名称:电商平台用户行为分析与复购率提升** **项目背景** 某科技公司旗下电商平台发现近3个月用户复购率下降5%,需通过数据分析定位问题并制定优化策略。 --- #### **数据分析师助理的核心参与环节** ##### 1. **数据清洗与预处理** - **任务**:从MySQL数据库提取用户订单表(`order_table`)、行为日志表(`user_log`)和商品信息表(`product_info`) - **具体工作**: - 使用Python的`pandas`处理缺失(如补全用户地域字段) - 剔除异常数据(如订单金额为负的记录) - 关联多表生成宽表: ```sql SELECT o.user_id, o.order_time, p.category, l.click_count FROM order_table o JOIN product_info p ON o.product_id = p.id JOIN user_log l ON o.user_id = l.user_id ``` ##### 2. **用户分层与特征分析** - **工具**:Python(`scikit-learn`聚类算法)、Tableau可视化 - **输出成果**: - **RFM模型**划分用户价(代码示例): ```python # 计算R(最近购买时间)、F(购买频次)、M(消费金额) rfm = df.groupby('user_id').agg({ 'order_time': lambda x: (pd.Timestamp.now() - x.max()).days, 'order_id': 'count', 'amount': 'sum' }) ``` - 发现**高价用户流失特征**: - 过去30天未登录的用户中,35%曾购买单价>500元的3C类商品 - 流失用户的平均页面停留时间比活跃用户低40% ##### 3. **A/B测试支持** - **协作任务**:为产品经理设计优惠券发放策略的AB测试 - 实验组(B组):向流失高价用户推送满1000减150元券 - 对照组(A组):维持原价 - **分析方法**: - 使用SQL计算两组用户的**复购率差异**: ```sql SELECT group_type, COUNT(DISTINCT user_id) AS total_users, SUM(CASE WHEN repurchase_flag=1 THEN 1 ELSE 0 END)/COUNT(*) AS repurchase_rate FROM ab_test_table GROUP BY group_type ``` - 通过**卡方检验**验证显著性(Python代码): ```python from scipy.stats import chi2_contingency observed = [[120, 380], [200, 300]] # [复购数, 未复购数] chi2, p, _, _ = chi2_contingency(observed) ``` ##### 4. **报告输出与策略建议** - **交付物**:PPT报告 + Excel明细数据 - **核心结论**: - 高价用户流失主因:**缺乏高单价商品精准推荐**(通过关联规则挖掘发现:购买手机的客户常同时购买耳机,但未触发推荐- 建议方案: - 优化推荐算法:对3C类用户增加跨品类推荐(如手机→耳机/充电宝) - 建立流失预警模型:当用户连续7天未登录时,触发短信唤醒 --- #### **技术栈与软技能要求** | **环节** | **工具/技能** | |------------------|--------------------------------------| | 数据提取 | SQL(窗口函数、多表JOIN) | | 数据分析 | Python(pandas/numpy/scipy)、Excel | | 可视化 | Tableau/Power BI(制作动态仪表盘) | | 协作沟通 | 与产品/运营团队对齐指标定义、需求拆解 | --- #### **项目成果** - 3个月内试点用户复购率提升**8.2%** - 构建标准化用户分析看板,节省后续同类需求60%时间成本 --- ### **新手学习路径建议** 1. **优先掌握**:SQL复杂查询 + Python数据清洗(可参考《利用Python进行数据分析》) 2. **实战案例**:Kaggle电商数据集(如《Brazilian E-Commerce Public Dataset》) 3. **思维培养**:关注指标波动背后的业务逻辑(例如:复购率下降是否与物流时效相关?) 通过此类项目,助理不仅能积累技术经验,还能深入理解**数据驱动业务决策**的实际价。 可以给我生成流程图吗
03-27
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值