摘要:随着人工智能技术的快速发展,尤其是大语言模型的突破性进展,电商行业正经历着前所未有的变革。本文基于新质生产力理论,采用文献研究、问卷调查、访谈等方法,系统分析了大模型技术对电商行业的影响,研究了电商专业毕业生的职业发展现状与转型路径。研究发现,大模型正在重塑电商行业的业务模式和工作方式,对从业人员的技能结构提出了新要求。面对挑战,电商专业毕业生亟需拓展跨境电商、数字人、元宇宙、大数据等新兴方向的职业发展路径。文章提出优化课程体系、改革实践教学、创新校企合作模式等人才培养策略建议,以期为电商专业教育贡献参考。
关键词:大语言模型;电商专业;职业发展;人才培养
一、绪论
(一)研究背景与意义
大数据、云计算、人工智能等新一代信息技术的快速发展,正在深刻影响和重塑社会经济的方方面面。2022年11月,OpenAI发布了ChatGPT等大语言模型,引发了全球范围内的广泛关注和讨论。大语言模型通过海量数据训练,具备了惊人的语言理解和生成能力,在问答、对话、写作、编程等领域展现出了超越人类的潜力,被誉为人工智能新时代的里程碑式突破。
电子商务作为数字经济的重要组成部分,长期以来依托互联网平台,通过数字化手段重构产业价值链,已成为经济发展的新引擎。2022年,中国电商交易规模突破50万亿元,占社会消费品零售总额的比重超过30%。伴随数字化进程的不断深化,电商行业正从传统的"人找货"向"货找人"转变,从标准化向个性化定制发展,从注重"量"的增长到更加关注"质"的提升。大语言模型为电商行业智能化发展提供了新的技术可能,有望实现营销、客服、搜索、推荐等环节的升级换代,推动形成更加高效、精准、人性化的消费体验。
然而,技术变革的同时也带来了就业结构的深刻调整。部分传统岗位面临被替代的风险,而大量新兴岗位对从业者提出了更高的综合素养要求。作为电商行业的生力军,电商专业毕业生的职业发展备受关注。在大模型等前沿技术的冲击下,电商专业人才如何把握行业发展趋势,开拓创新职业转型路径,建立个人竞争优势,已成为亟待研究的重要课题。这不仅关系到每一位毕业生的职业幸福感,更关乎电商行业乃至整个数字经济的可持续发展。
基于此,本文立足新质生产力理论视角,围绕大模型技术应用,聚焦电商专业毕业生群体,深入分析大模型对电商行业的重塑作用以及对从业人员技能要求的影响,系统研究电商专业毕业生的职业发展现状与面临的机遇挑战,积极探索跨境电商、数字人、元宇宙、大数据等前沿领域的创新职业转型路径,力求为电商专业人才培养提供决策参考,为电商行业数字化智能化升级提供人才支撑。
(二)研究内容与方法
本文研究内容主要包括以下几个方面:
1. 梳理大语言模型的发展脉络,总结其技术特点和应用前景,重点剖析其在电商行业的应用场景和潜在影响。
2. 调研电商专业毕业生的就业现状,分析其职业发展路径和所需技能结构,诊断面临的主要困境和挑战。
3. 探索大模型时代电商专业毕业生的职业转型策略,重点围绕跨境电商、数字人、元宇宙、大数据等新兴赛道,设计可行的学习路径和能力培养方案。
4. 审视当前电商专业人才培养现状,针对性提出优化课程体系、改革实践教学、创新校企合作模式等对策建议。
本文采用文献研究、问卷调查、访谈、案例分析等方法。其中,文献研究梳理大模型发展历程和电商行业趋势,夯实研究的理论基础;问卷调查广泛收集电商专业毕业生的就业去向、技能需求等第一手数据;访谈则通过与电商企业高管、行业专家的深度沟通,洞察行业发展动向和人才需求;案例分析则选取典型电商企业,剖析其大模型应用实践,总结经验教训。力求在定性定量分析的基础上,形成客观、翔实、富有洞见的研究成果。
(三)创新之处
本文的选题具有鲜明的时代特色和现实意义。聚焦大模型等前沿技术发展,紧扣电商行业转型升级,关注大学生就业这一社会热点,体现了理论研究与实践应用的紧密结合。
在研究视角上,本文立足新质生产力理论,从技术变革与产业发展的辩证分析入手,突破了单一的技术决定论或产业决定论,力求系统把握大模型、电商行业、人才培养三者之间的复杂互动关系,揭示大模型驱动下电商专业人才发展的内在机理和趋势性变化。
在研究方法上,本文注重理论与实证的结合、宏观与微观的统一。在扎实文献研究的基础上,通过问卷、访谈等实地调研,广泛收集鲜活的一手资料,并辅以案例分析提炼经验,力求增强研究结论的科学性和说服力。
在研究内容上,本文紧密围绕跨境电商、数字人、元宇宙、大数据等前沿领域,深度剖析电商专业毕业生的职业转型路径,并提出优化课程、改革教学、加强产教融合的人才培养对策,具有较强的理论探索意义和实践指导价值。
二、文献综述
(一)大模型的发展现状
大语言模型(Large Language Model,LLM)是人工智能自然语言处理领域的重要突破。自2017年Transformer模型提出以来,GPT、BERT、T5等预训练语言模型不断刷新各项任务基准,成为NLP领域的研究热点。2022年,GPT-3、PaLM、BLOOM等大规模语言模型相继发布,参数量高达数百亿至千亿级别,在语言理解、知识问答、逻辑推理等方面展现出了超越人类的能力,标志着人工智能进入大模型时代。
尽管取得了瞩目成就,但大模型仍面临诸多亟待攻克的难题。其一,海量参数带来了巨大的算力需求和训练成本。其二,黑盒模型缺乏可解释性,存在偏见、幻觉等问题。其三,由于缺乏常识推理和因果思维,大模型难以真正理解语言的内在逻辑。此外,大模型的训练数据通常来自网络文本,容易带有错误、偏见甚至违法违规信息,亟需强化价值观引导。总的来说,大模型技术方兴未艾,未来仍需在算法、数据、硬件等层面持续创新,实现能力、效率、安全、伦理的共同提升。
(二)电商行业的发展趋势
电子商务经过20余年的高速发展,已成为数字经济的中坚力量。随着移动互联网、直播带货等新业态新模式的崛起,电商行业正在从粗放式增长向高质量发展转变。未来,个性化定制将成为主流趋势,用户运营、供应链优化、线上线下融合等将成为电商企业的核心竞争力。
具体来看,跨境电商有望成为外贸数字化转型的新增长点。在后疫情时代,跨境电商正成为连接全球产业链供应链的重要纽带,成为中小企业拓展海外市场的新选择。数字人员工、AI客服等将在营销、客服等环节发挥越来越重要的作用,提升电商运营效率。VR/AR、虚拟数字藏品等元宇宙技术为电商带来沉浸式体验升级,重塑用户互动方式。大数据、用户画像、智能推荐等将驱动精准营销变革,提升用户体验。总之,电商行业正从电子商务1.0进化到2.0、3.0时代,数字化、智能化、场景化、体验式消费将成为主流特征。
(三)相关理论基础
本文主要依托新质生产力理论展开分析。20世纪80年代,美国管理学家德鲁克提出"新质生产力"概念,认为知识和技术的运用,正在成为推动经济社会发展的根本动力,是继土地、劳动力、资本之后的新型生产力形态。进入21世纪,以移动互联网、大数据、人工智能为代表的新一代信息技术迅猛发展,正重塑生产方式、生活方式和治理方式,催生出智能经济新形态。
新质生产力理论为分析大模型驱动下电商行业的变革提供了重要视角。一方面,大模型作为人工智能领域的前沿技术成果,正成为数字时代的关键生产力,深刻影响电商行业的技术路线和发展方向。从营销推广到客户服务,从搜索推荐到供应链优化,大模型有望全面赋能电商产业链各个环节,推动行业加速向智能化、个性化、高效化升级。另一方面,大模型对电商从业人员的知识结构和能力素养也提出了新的要求。掌握编程、算法、数据分析等复合型技能,建立跨界思维、创新意识和快速学习能力,将成为电商人才的核心竞争力。
三、大模型对电商行业的影响分析
(一)大模型在电商领域的应用场景
随着大模型技术不断成熟,其在电商领域的应用正在从概念探索走向规模化落地。总体来看,大模型在营销推广、客户服务、搜索推荐、智能助理等方面具有广阔应用前景,有望成为电商企业实现降本增效、优化体验的利器。
1.智能营销。大模型可根据海量用户数据,自动生成个性化的营销文案和创意素材,提高营销效率和转化率。例如,阿里巴巴开发的智能写作助手"鹿班"可根据商品属性自动生成商品详情页文案,京东推出的营销AI可实现千人千面的精准推送。
2.客服机器人。传统的客服模式难以应对海量重复问题,而大模型驱动的智能客服可24小时无休地解答用户问题,大幅提升服务效率和用户满意度。例如,有赞、微盟等电商SaaS平台均推出了智能客服系统,可准确理解用户意图,提供个性化答疑解惑。
3.智能搜索。大模型可深度理解用户搜索意图,提供更加精准、多样、个性化的搜索结果,优化产品曝光和转化路径。例如,Shopee基于大模型算法优化搜索排序策略,大幅提升搜索转化率。
4.智能助理。大模型可作为导购助手,根据用户画像、历史行为、实时场景等,提供商品推荐、购买决策支持等服务,并可与用户进行多轮对话交互。
5.供应链优化。大模型可实现销量预测、智能采购、库存管理等环节的自动化决策,提升供应链运营效率。例如,菜鸟供应链大脑可预测爆款商品,优化库存水位,减少缺货和滞销风险。
6.内容运营。大模型可自动生成商品评论、导购攻略、行业资讯等多样化内容,提升商品信息丰富度,引导消费决策。
7.视觉搜索。大模型与计算机视觉技术结合,可实现以图搜图、以图搜款等功能,为用户提供更加直观、便捷的商品搜索体验。
(二)大模型带来的生产力变革
从生产力视角审视,大模型正在多个层面重塑电商行业的业务模式和生产关系,成为驱动行业变革的新引擎。
首先,大模型推动电商营销模式从"千人一面"向"千人千面"转变。传统的电商营销主要依靠EDM、banner、搜索竞价等形式,难以匹配海量长尾用户的个性化需求。大模型则可通过学习用户行为数据,动态生成个性化的营销内容,实现"千人千面"的精准触达。这意味着电商企业可以更高效地将商品、服务与用户匹配起来,从而降低营销成本,提高投入产出比。
其次,大模型促进电商客服从被动应答向主动服务升级。在传统模式下,客服人员被动接受用户咨询,难以及时、高质量地响应海量问题,用户体验不佳。应用大模型后,智能客服可通过算法实时生成个性化答复,7x24小时提供服务,并可通过分析用户意图,主动提供商品推荐、售后指导等服务,将客服从成本中心转变为营收中心,实现客服价值的跃升。
再次,大模型推动电商决策从经验驱动向数据智能驱动转型。电商运营通常涉及商品选品、定价、库存管理、物流配送等诸多决策,传统上主要依赖个人经验和主观判断,存在效率低、准确性差等问题。引入大模型后,电商企业可通过机器学习实现销量预测、智能定价、库存优化等关键决策的自动化,大幅提升运营效率和科学化水平,增强企业对市场的快速响应能力。
最后,大模型为电商创造了全新的业务模式和价值增长点。例如,基于大模型的智能导购助理可与消费者深度互动,提供商品推荐、使用指导等服务,实现消费体验升级和交易转化提升。又如,大模型驱动的内容自动生成技术可批量创作商品评测、行业观点等优质内容,丰富商品信息,引导消费决策。再如,大模型赋能的跨语言交互翻译可帮助卖家、买家跨越语言鸿沟,促进跨境电商繁荣发展。
综上,大模型作为新质生产力的代表,正重塑电商行业的业务运行逻辑和价值创造模式。电商企业应积极顺应技术变革趋势,将大模型嵌入营销、客服、决策、创新等关键领域,驱动组织流程再造和效率提升,实现数字化转型和价值升级。
(三)大模型对电商从业人员技能要求的影响
大模型的应用不仅重塑了电商企业的经营模式,也对从业人员的知识结构和能力素养提出了更高要求。
一是要求具备跨界整合的复合型技能。大模型的开发与应用涉及计算机科学、人工智能、语言学等多个学科领域,需要技术、业务、数据等多个部门紧密协同。这就要求电商从业者打破学科壁垒,掌握编程、算法、数据分析等复合型技能,既要理解业务场景和需求,又要掌握技术工具和方法,实现技术驱动业务、业务赋能技术的良性循环。
二是要求建立数据思维和创新意识。大模型本质上是从海量数据中学习和提炼知识,因此数据质量和丰富度直接决定了模型效果。电商从业者需要树立起数据思维,重视数据采集、清洗、治理、应用的全流程管理,将数据作为核心生产资料,充分发掘数据价值。同时,要勇于创新,积极探索大模型技术在营销、客服、运营等场景的创新应用,用技术驱动业务流程再造和模式创新。
三是要求培养快速学习和持续进化的能力。当前,大模型技术仍处于快速迭代的早期阶段,新模型、新算法、新应用层出不穷。这就要求从业者保持开放心态和学习热情,持续追踪技术前沿动态,快速学习和掌握新知识、新技能,并将其应用到实践中去。同时,要主动拥抱变化,以敏捷思维适应新技术带来的业务模式、流程机制的变革,持续驱动组织进化和个人成长。
四是要求坚持人本导向和价值伦理。大模型在给企业和用户带来便利的同时,也可能带来隐私泄露、算法偏见等伦理风险。电商从业者应坚持以人为本,在大模型的开发和应用中贯彻隐私保护、公平性、透明度等基本原则,确保将大模型技术规范地应用于经济社会发展的主战场,最大限度地增进人类福祉。
总之,大模型时代对电商从业者的综合素养提出了新的更高要求。从业者应加快知识迭代和能力升级,掌握前沿的理论、方法、工具,发扬工匠精神和创新精神,坚守职业操守和价值伦理,在推动电商产业数字化智能化发展的同时,实现个人职业价值和社会价值的同频共振。
四、电商专业毕业生职业发展现状调研
为深入了解电商专业毕业生的职业发展现状,本研究采用问卷调查和访谈相结合的方式,对来自高校电商专业的应届毕业生和近三年毕业生进行了调研,以期为后续分析和对策建议提供实证支撑。
(一)就业去向与职位分布
调研结果显示,电商专业毕业生的就业去向主要集中在电商平台、品牌商、服务商等领域。其中,阿里巴巴、京东、拼多多等头部电商平台是毕业生就业的首选。此外,字节跳动、腾讯等互联网巨头的电商业务,以及网易严选、小米有品等品牌电商,也吸纳了大量电商专业人才。
从职位分布来看,运营是电商专业毕业生的主要就业方向,运营助理、内容运营、活动运营、直播运营等岗位占比较高。其次是营销岗,主要从事商家营销、平台营销、社交营销等工作。产品经理、数据分析、客户服务等岗位也吸纳了部分毕业生,但占比相对较低。值得注意的是,仅有少数毕业生从事算法、开发等技术岗位,反映出电商专业在培养复合型技术人才方面还有待加强。
(二)工作内容与技能需求
调研发现,电商专业毕业生的工作内容主要包括商品管理、活动策划、流量运营、数据分析等。一方面,日常工作涉及商品上下架、选品规划、价格管理等店铺运营,以及营销活动策划、推广落地等,对业务能力要求较高。另一方面,流量获取、用户运营、数据分析等成为越来越重要的工作内容,需要掌握流量工具、数据指标等专业知识。
在通用能力方面,电商岗位普遍要求较强的语言表达、沟通协调、执行力和创新意识。在专业技能方面,店铺运营、活动策划、直播带货、短视频制作、流量分析、用户运营等成为就业必备技能。数据分析、产品思维、跨境电商等skills逐渐成为职场加分项。
访谈中,多位毕业生反映,在校期间学习的理论知识与实际工作存在一定差距,实操技能相对欠缺。快速变化的电商环境也要求从业者必须持续学习,跟上行业发展趋势。“电商的变化太快,每天都有新知识需要学习,比如直播、短视频、跨境等新业态层出不穷,必须与时俱进,加快知识迭代。”
(三)职业发展瓶颈与困境
调研还发现,电商专业毕业生普遍面临职业发展瓶颈。一是专业发展空间有限。电商运营岗位多为基础性工作,且竞争激烈,晋升空间有限。二是专业技能单一。不少毕业生反映,在校所学知识难以匹配岗位需求,缺乏专项技能,职业竞争力不足。三是转型困难。部分毕业生希望向产品、技术等方向转型,但苦于缺乏系统学习途径和项目实践机会。
“电商运营其实是个青春饭,做到一定阶段就很难再进步了”“现在电商讲究复合型人才,仅会运营已经不够了,还得懂技术、懂创意”。受访者的感悟折射出电商人才培养的困境,亟需创新人才培养模式,赋能学生多元化成长。
总的来说,电商专业毕业生就业前景总体乐观,传统的运营、营销等岗位仍是主要就业方向。但随着电商行业的快速升级,岗位要求不断提高,单一的业务技能已难以适应数字化时代的需求。面对人工智能、直播短视频、供应链金融等新业态,毕业生普遍感到知识储备不足,职业转型阻力重重。这既是个人成长的烦恼,也折射出电商专业教育有待进一步创新的问题。高校应顺应产业变革趋势,加快复合型人才培养,为学生职业发展赋能。
五、电商专业毕业生职业转型路径探索
面对大模型等新技术变革,电商专业毕业生亟需开拓新的职业转型路径,提升专业技能,增强职场竞争力。本研究梳理出跨境电商、数字人、元宇宙、大数据等几大新兴领域,并探索相应的转型策略。
(一)跨境电商方向:市场前景、岗位要求、发展路径
跨境电商近年来保持高速增长,成为外贸数字化转型的新引擎。海关数据显示,2022年我国跨境电商进出口规模达2.11万亿元,同比增长9.8%。在全球产业链重构背景下,跨境电商已成为中小企业拓展海外市场的新选择,为电商人才提供了广阔的就业舞台。
跨境电商涉及前端营销、平台运营、进出口通关、国际物流、本地化服务等诸多环节,对从业者的专业素养提出了更高要求。一是语言能力,要求掌握英语等小语种,能适应跨文化交流;二是商务知识,要熟悉国际贸易规则,了解不同国家的消费特点;三是运营技能,要掌握亚马逊、eBay、Wish等主流跨境电商平台的选品、营销、客服等实操技巧;四是数字化工具,要善用Google Analytics、选品工具、图像处理等数字化应用。
对电商专业毕业生而言,转型跨境电商可以考虑以下路径:一是加强外语学习,提升国际化视野和跨文化交际能力;二是熟悉海关、税务、外汇等外贸业务流程,了解跨境电商监管规则;三是学习速卖通、亚马逊等平台的实操技能,积累实战经验;四是关注海外社交媒体,洞察当地消费趋势;五是利用跨境电商专业培训、行业会议等机会,建立行业人脉。
(二)数字人/元宇宙方向:应用场景、技能需求、发展前景
随着元宇宙概念的兴起,数字人技术日益走向成熟,在内容生产、客户服务、虚拟直播等领域崭露头角。灯塔专业版数据显示,2022年虚拟人相关企业注册量达4233家,同比增长21.5倍。国内已涌现出ayayi、柳夜熙、二踢脚等知名虚拟偶像,国外更有Lil Miquela等超写实数字人走红网络。这为电商专业毕业生提供了全新的职业想象空间。
电商场景与数字人有诸多结合点。一是虚拟主播,数字人可作为商家的专属虚拟代言人,7x24小时直播带货;二是智能客服,数字人可应用于售前咨询、售后服务,提升客户体验;三是IP营销,塑造独特人设和IP属性,吸引粉丝,带动商品销售;四是创意设计,利用AI生成、动作捕捉等新技术,提升数字内容生产效率和质量。
电商专业毕业生要进入数字人/元宇宙赛道,需要掌握以下关键技能:一是三维建模与动画,熟悉Maya、Blender、C4D等建模工具,掌握骨骼绑定、动作捕捉、渲染合成等CG流程;二是计算机视觉,了解人脸识别、图像分割、动作检测等CV算法,并应用于虚拟形象的创建和驱动;三是自然语言处理,利用大语言模型实现数字人的智能对话功能;四是游戏引擎,掌握Unity、Unreal等引擎的开发技能,搭建沉浸式的虚拟场景和互动体验;五是虚拟偶像运营,围绕数字人IP进行商业开发,如虚拟直播、数字藏品、衍生品等。
元宇宙是数字经济发展的新前沿,大有可为。电商专业毕业生可以通过参加虚拟偶像创作大赛、游戏Mod开发等加强实战锻炼,在实践中提升技术技能。未来可以在MCN机构、游戏公司、元宇宙平台等新型业态担任虚拟偶像运营师、技术美术、游戏策划等角色,开创职业发展新赛道。
(三)大数据/人工智能+方向:岗位职责、学习路径、职业规划
大数据和人工智能正加速与电商行业深度融合,数据分析师、算法工程师等复合型人才备受青睐。艾瑞咨询数据显示,2022年中国大数据市场规模达1348亿元,同比增长14.6%。阿里、京东、拼多多等电商平台纷纷成立大数据部门,利用机器学习算法优化业务流程,开发个性化推荐、智能搜索、供应链预测等应用,推动精细化运营。这为电商专业毕业生提供了技术转型的广阔空间。
大数据/人工智能在电商领域主要涉及以下岗位:一是数据分析师,负责设计数据指标体系,追踪流量、转化、复购等关键指标,并提供决策建议;二是算法工程师,负责个性化推荐、智能搜索排序、定价优化、物流规划等算法的开发和优化;三是大数据开发工程师,负责搭建数据仓库、数据管道,为数据分析和算法应用提供高效的数据支撑;四是业务数据产品经理,负责挖掘业务需求,设计数据产品方案,推动数据创新应用。
电商专业毕业生要转型大数据/人工智能方向,需要补足计算机基础知识,并掌握以下关键技能:一是编程能力,熟悉Python、Java、SQL等语言,掌握算法设计和代码实现;二是机器学习,了解常用的机器学习算法,如协同过滤、决策树、神经网络等;三是数据库,掌握MySQL、Hive、HBase等数据库的使用和优化;四是大数据框架,熟练使用Hadoop、Spark、Flink等大数据处理框架;五是数据可视化,使用Tableau、PowerBI等工具实现数据可视化呈现。
转型大数据/人工智能领域需要较长的学习和实践周期。电商专业毕业生可以通过参加线上编程课程、数据分析竞赛、开源项目等提升编程和数据处理技能,并利用校企合作、实习等机会参与真实业务场景的数据分析项目,在实战中强化专业技能。同时要注重理论学习,攻读数据科学、人工智能等相关领域的研究生,打牢扎实的学科基础。
未来,电商专业毕业生可以在互联网公司、咨询公司、金融机构等从事数据分析师、算法工程师、大数据开发等职位,也可以在政府部门、科研院所从事数据治理、人工智能应用研究等工作。随着数字经济的快速发展,掌握大数据和人工智能技能将成为电商人才的核心竞争力,助力实现职业的长远发展。
六、电商专业人才培养策略建议
大模型时代对电商专业人才培养提出了新的更高要求。高校应顺应技术变革和产业发展趋势,加快人才培养模式创新,优化课程体系,改革实践教学,创新校企合作机制,多措并举提升人才培养质量,为学生未来发展赋能。
(一)课程体系优化
一是前沿技术进课堂。将Python编程、人工智能导论、大数据分析等课程纳入教学计划,开设元宇宙商业模式、直播电商运营等新兴领域选修课,让学生及时了解行业前沿动态。二是复合技能强培养。加强商务英语、跨文化交际、短视频制作、新媒体运营等课程,培养学生国际化视野和创新创意能力。三是数理基础夯实。增加高等数学、线性代数、概率论等课程比重,为学生后续学习人工智能、大数据打下坚实基础。四是创新创业贯穿始终。开设创新思维训练、创业管理等必修课,举办创新创业大赛,鼓励学生积极参与各类创新创业实践。
(二)实践教学改革
一是项目驱动。引入真实企业项目,采用项目制教学,让学生参与产品规划、需求分析、营销推广等实战环节,提升动手能力。二是竞赛引领。积极组织学生参加"互联网+"、"挑战杯"等各类大学生竞赛,引导学生将所学知识应用于解决实际问题。三是实习支持。建立健全实习管理制度,拓展优质实习基地,为学生提供长期、多样的实习锻炼机会。四是海外游学。开展海外访学项目,资助学生赴国外高校、电商企业交流学习,开拓国际化视野。
(三)校企合作创新
一是产教融合。吸引阿里、京东、网易等知名电商企业深度参与人才培养,成立理事会,共商人才培养方案,合作开发课程,提供实习实践岗位。二是订单班。与企业合作开设订单班,根据企业需求量身定制培养方案,学生毕业后直接到企业就业,实现培养与就业的无缝衔接。三是双师制。聘请行业专家、企业高管担任兼职教师,开设讲座、参与课程授课,让学生及时了解行业趋势和岗位需求。四是科研合作。鼓励教师与企业合作开展产学研项目,让学生参与其中,提升科研实践能力。
总之,大模型时代对电商专业人才的知识结构和能力素养提出了更高要求。电商专业教育要主动适应新技术变革,加快人才培养模式变革,在课程设置、教学方式、实践锻炼、校企合作等方面系统创新,培养具备前沿视野、复合技能、创新意识的高素质应用型人才,助力学生在数智时代实现长远发展。
七、结论
本文基于新质生产力视角,分析了大模型技术对电商行业的重塑作用,研究了电商专业毕业生的职业发展现状与转型策略,并提出了相应的人才培养对策建议。主要结论如下:
(一)大模型正成为驱动电商行业变革的新引擎,推动营销、客服、运营等环节的智能化升级,并催生出智能导购、虚拟直播等新业态新模式,对电商从业者的知识结构和能力素养提出了更高要求。
(二)调研显示,电商专业毕业生就业前景总体向好,但职业发展面临一定瓶颈。部分毕业生反映专业技能单一、创新能力不足,难以适应行业变革需求,亟需开拓职业转型新路径。
(三)跨境电商、数字人、元宇宙、大数据等新兴赛道为电商专业毕业生提供了广阔的职业想象空间。毕业生应树立终身学习理念,加快知识迭代,并注重在实践中强化新技能,增强职场竞争力。
(四)高校电商专业教育应顺应新技术变革趋势,优化前沿课程设置,加强复合技能培养,创新产教融合机制,多措并举提升人才培养质量,为学生成长成才、服务产业发展提供有力支撑。
未来,建议进一步扩大调研范围和样本量,开展全国性、跨学校的大样本调研,形成更加全面、客观的行业人才发展图谱。同时,要密切关注ChatGPT等大模型工具的最新进展,系统评估其对各行各业的影响,研判人才能力需求变化,动态优化人才培养方案,助力经济社会高质量发展。
电商行业正处在数字化、智能化的快车道上,唯有敢为人先、勇于创新,才能抓住技术变革的历史机遇,实现人才培养和产业发展的共同进步。站在数字经济新起点,电商专业教育大有可为,必将为国家经济社会发展源源不断地输送优质人才,为全面建设社会主义现代化国家贡献智慧和力量。
人工智能大模型越来越火了,离全民大模型的时代不远了,大模型应用场景非常多,不管是做主业还是副业或者别的都行,技多不压身,我这里有一份全套的大模型学习资料,希望给那些想学习大模型的小伙伴们一点帮助!
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓