2021 年夏天,OpenAI 悄悄关闭了其机器人团队,它给出的原因是缺乏训练机器人使用人工智能移动和推理所需的数据,导致研发受到阻碍。
(来源:COVARIANT)
现在,OpenAI 的三位早期研究科学家表示,他们在 2017 年成立的名为 Covariant 的初创公司已经解决了这个问题,并推出了一个新系统,可以将大型语言模型的推理技能与先进机器人的身体灵活性结合起来。
这个新模型 RFM-1 使用的数据来自于互联网上的文字和视频,以及 Covariant 自己的小型分拣机器人。Crate & Barrel 和 Bonprix 等客户在世界各地的仓库中使用了这些分拣机器人。
在接下来的几个月里,Covariant 将向客户推出该模型。该公司希望,将该系统部署在现实世界中,可以让它变得更加强大和高效。
视频 | (来源:COVARIANT)
那么它能做什么呢?在我最近参加的一次演示中,Covariant 的联合创始人皮特·陈(Peter Chen)和彼得·阿布贝尔(Pieter Abbeel)向我展示了用户如何使用五种不同类型的输入来提示模型:文本、图像、视频、机器人指令和测量。
例如,给它看一张装满运动器材的箱子的图片,并告诉它拿起一包网球,机器人就可以抓起网球,生成一张图片展示网球被拿走后箱子的样子,或者创建一个视频,以俯视视角展示机器人执行任务的样子。
如果该模型预测它将无法很好地抓住物品,它甚至可能会回复:“我拿不住(它),你有什么建议吗?”我们可以回复并建议它在机械臂上使用特定数量的吸盘,以更好地抓握。例如,告诉它用 8 个吸盘,而不是 6 个。
陈告诉我,这意味着机器人领域的一大步,它们可以使用训练数据来适应工作环境,而不是依赖驱动上一代工业机器人的、复杂的特定任务代码。
这也是让机器人迈向工作场所的重要一步。和它共事的人可以用人类语言发布指令,而不必担心累坏它:按照这份食谱,给我准备 600 份预制意面,做不完不准休息!
美国纽约大学通用机器人和人工智能实验室负责人莱尔·平托(Lerrel Pinto)表示,尽管机器人学家之前已经构建出了基本的多模态机器人,并在实验室环境中测试过。
但是大规模部署一个能够以如此多种方式进行沟通的机器人,是令人印象深刻的成果。他与 Covariant 没有任何关系。
平托告诉我,为了超越竞争对手,Covariant 必须获得足够的数据,才能让机器人在真实环境中发挥作用。
仓库和装载码头很适合对其进行测试。因为在那里,它们会不断与新的指令、人、物体和环境交互。
他说:“想要训练好的模型,研发团队必须能够获取大量的机器人数据,或者能够自己生成这些数据。”
Covariant 表示,该模型具有“类似人类”的推理能力,但也有其局限性。在演示过程中,我可以看到 Covariant 机器人的实时反馈,以及一个与它交流的聊天窗口。陈邀请我随意向模型输入提示(prompt)。
当我让机器人“把香蕉放回二号托特包”时,它陷入了困境。它先是捡起一块海绵,再捡起一颗苹果,然后是许多其他东西,最后才完成放回香蕉的任务。
“它不理解这个新概念。”陈解释道,“但这是一个很好的例子,如果它没见过好的训练数据,就可能会出现问题。”
该公司的新模型体现了机器人世界的范式转变。研究人员不是通过物理方程和代码等指令告诉机器人世界如何运转,而是以与人类学习相同的方式教机器人:通过数百万次观察。
陈说,结果“真的可以作为一个非常有效而灵活的大脑,来解决各种机器人任务”。
2024 年,越来越多的公司正在尝试开发人工智能驱动的机器人控制系统,这个赛道可能会变得十分拥挤。
本月早些时候,人形机器人初创公司 Figure AI 宣布将与 OpenAI 合作,并从英伟达和微软等科技巨头那里筹集了 6.75 亿美元。
波士顿动力公司创始人麦克·瑞贝特(Marc Raibert)最近发起了一项将人工智能更好地融入机器人技术的倡议。
这意味着,机器学习的进步很可能开始转化为机器人技术的进步。然而,一些问题仍未解决。
如果大型语言模型继续在无数文字内容上进行训练,却不对这些内容的作者进行补偿,那么机器人模型也将在不向创作者付费的情况下使用网上的视频进行训练。
如果语言模型产生幻觉并长期存在偏见,那么机器人技术中会出现什么类似的东西?
与此同时,Covariant 将继续前进,致力于让 RFM-1 模型不断学习和完善。最终,研究人员的目标是让机器人在模型本身创建的视频上进行训练。
这种学习方式可能让人感到困惑,还会引发人们的担忧:如果模型的错误在训练中不断放大,会出现什么后果?但出于对更多训练数据的渴望,研究人员认为这几乎是不可避免的。
阿布贝尔说:“这种训练方式将成为现实。如果我们半年后再见面,那时候它就将成为我们讨论的话题。”
人工智能大模型越来越火了,离全民大模型的时代不远了,大模型应用场景非常多,不管是做主业还是副业或者别的都行,技多不压身,我这里有一份全套的大模型学习资料,希望给那些想学习大模型的小伙伴们一点帮助!
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓