深入解析与应用:一篇文章带你搞懂Transformer模型

Transformer模型自从2017年问世以来,迅速成为自然语言处理(NLP)领域的核心技术。它的强大性能不仅在NLP中得到验证,还在计算机视觉等领域展现出卓越的表现。本篇文章将详细介绍Transformer的基本原理及其使用方法,帮助大家深入理解Transformer模型。

Transformer模型基本结构

Transformer的核心结构包括两个主要部分:编码器(Encoder)解码器(Decoder)。每个部分又由多个层堆叠而成。

编码器(Encoder)

编码器由N层相同的子层(sub-layer)堆叠而成。每一层包含两个主要子层:

  1. 多头自注意力机制(Multi-Head Self Attention)

  2. 前馈神经网络(Feed Forward Neural Network)

每个子层之后都接有残差连接(Residual Connection)和层归一化(Layer Normalization)。

解码器(Decoder)

解码器与编码器类似,但每一层多了一个额外的子层:

  1. 多头自注意力机制

  2. 编码器-解码器注意力机制(Encoder-Decoder Attention)

  3. 前馈神经网络

解码器的每一层也有残差连接和层归一化。

自注意力机制(Self-Attention

自注意力机制是Transformer的核心创新之一。它能够在计算时并行处理输入序列中的所有位置,捕捉到全局的依赖关系。自注意力机制的具体步骤如下:

  1. 输入序列通过线性变换得到查询(Query)、键(Key)和值(Value)。

  2. 计算查询和键的点积,并通过Softmax函数得到注意力权重。

  3. 将注意力权重与值相乘,得到加权后的输出。

多头注意力机制(Multi-Head Attention)

多头注意力机制通过并行计算多个自注意力机制,可以捕捉到输入序列中不同位置的多种依赖关系。其具体操作是将输入序列分成多个头(head),分别进行自注意力计算,最后将各头的输出拼接起来,再通过线性变换得到最终输出。

Transformer的优势

  1. 并行计算:相比RNN,Transformer不需要逐步处理序列数据,可以并行计算,大大提高了训练速度。

  2. 长距离依赖:自注意力机制能够直接捕捉到序列中任意位置之间的依赖关系,克服了RNN的长距离依赖问题。

  3. 可扩展性:通过堆叠更多的层数和头数,可以轻松扩展Transformer模型的容量。

Transformer的使用

数据预处理

Transformer模型需要将输入数据转换为固定长度的序列,并进行词嵌入(Embedding)处理。常用的方法是使用BERT等预训练模型进行词嵌入。

模型定义

下面是一个简化的Transformer模型的定义代码示例:

import torch``import torch.nn as nn``import torch.nn.functional as F``   ``class Transformer(nn.Module):`    `def __init__(self, num_tokens, d_model, num_heads, num_encoder_layers, num_decoder_layers):`        `super(Transformer, self).__init__()`        `self.embedding = nn.Embedding(num_tokens, d_model)`        `self.transformer = nn.Transformer(d_model, num_heads, num_encoder_layers, num_decoder_layers)`        `self.fc = nn.Linear(d_model, num_tokens)`        `    def forward(self, src, tgt):`        `src = self.embedding(src)`        `tgt = self.embedding(tgt)`        `output = self.transformer(src, tgt)`        `output = self.fc(output)`        `return output``   ``# 示例用法``num_tokens = 10000  # 词汇表大小``d_model = 512  # 词嵌入维度``num_heads = 8  # 注意力头数``num_encoder_layers = 6  # 编码器层数``num_decoder_layers = 6  # 解码器层数``   ``model = Transformer(num_tokens, d_model, num_heads, num_encoder_layers, num_decoder_layers)``   ``# 输入序列(假设已进行了适当的预处理)``src = torch.randint(0, num_tokens, (10, 32))  # (序列长度, 批量大小)``tgt = torch.randint(0, num_tokens, (20, 32))``   ``output = model(src, tgt)``   

Transformer模型因其并行计算和长距离依赖捕捉能力,在各个领域取得了卓越的成果。通过本篇文章的介绍,希望各位小伙伴能对Transformer有更深入的理解,并能在自己的项目中有效应用这一强大模型。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

  • 17
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值