Function Calling + LangChain 拉通业务系统的技术架构

近年来,大型语言模型(LLMs)如GPT-4的发展极大地推动了自然语言处理(NLP)领域的进步。这些模型在内容生成、语言翻译和对话系统等多个应用中展示了其强大的能力。然而,传统语言模型的局限性在于它们只能进行语言生成,无法与外部系统、API或自定义函数进行交互。本文将介绍如何通过Function Calling和LangChain技术架构,将LLMs与业务系统连接,探索其在实际业务流程中的应用和价值。

一、大型语言模型的概述
1.1 LLMs的定义与发展

LLMs通过训练海量数据生成高级语言模型,从最初的GPT-3到如今的GPT-4,这些模型在理解和生成自然语言文本方面取得了显著进步,被广泛应用于自动化内容创作、聊天机器人、语言翻译等多个领域。

1.2 传统LLMs的局限性

尽管LLMs在语言生成方面表现出色,但它们的局限性也非常明显。传统的LLMs无法获取实时数据,也不能与外部系统进行交互,这限制了它们在复杂业务场景中的应用。

二、Function Calling与LangChain的概念与机制
2.1 什么是Function Calling?

Function Calling是一种使LLMs能够与外部系统、API或自定义函数进行交互的新兴技术。通过解析用户请求并自动选择和调用适当的外部功能,Function Calling实现了更复杂和动态的交互。

2.2 什么是LangChain?

LangChain是一种用于构建和管理复杂语言模型应用的框架。它提供了模块化和可扩展的架构,使开发者能够轻松集成多种功能和服务,从而增强LLMs的能力。

2.3 Function Calling与LangChain的结合

将Function Calling与LangChain结合,可以实现LLMs与业务系统的无缝对接。Function Calling负责解析和执行请求,LangChain提供框架和工具,以便管理这些交互过程。

三、Function Calling+LangChain的技术架构
3.1 技术架构概览

技术架构包括以下几个核心组件:

  • 用户接口层:通过自然语言输入需求(prompt),用户与业务系统(应用)交互。

  • 解析与路由层:利用Function Calling解析用户请求,并确定所需的外部功能。

  • 功能调用层:通过LangChain框架管理和执行具体的功能调用。

  • 数据处理层:处理和分析从外部系统获取的数据。

  • 结果反馈层:将处理后的结果反馈给用户。

3.2 解析与路由

用户通过自然语言输入需求,Function Calling模块解析请求内容和意图,并确定所需的外部功能或API。LangChain框架则负责管理这些解析过程,确保请求被正确路由到相应的功能模块。

3.3 功能调用与数据处理

在功能调用层,LangChain通过预先设定的接口,选择并调用相关外部功能。外部系统返回数据后,数据处理层进行处理和分析,将结果转换为自然语言反馈给用户。例如,模型可以将复杂的金融数据分析结果生成简明的投资建议报告。

3.4 结果展示与交互

结果反馈层通过用户友好的界面展示处理结果,用户可以进一步与模型进行交互,提出新的请求或调整需求,从而实现连续、动态的交互流程。

3.5代码示例

`import openai``import os``import tiktoken``# 加载 .env 文件``from dotenv import load_dotenv, find_dotenv``from langchain.prompts import PromptTemplate``from langchain.llms import OpenAI``from langchain.chains import LLMChain``from langchain.chains import LLMRequestsChain``#from langchain.chat_models import AzureChatOpenAI``from langchain.chat_models import ChatOpenAI #直接访问OpenAI的GPT服务``   ``_ = load_dotenv(find_dotenv())``# 从环境变量中获得你的 OpenAI Key和配置URL``openai.api_key = os.getenv('OPENAI_API_KEY')``openai.api_base = os.getenv('OPENAI_API_URL')``model = os.getenv('OPENAI_API_MODEL')``   ``   ``   ``llm = ChatOpenAI(model_name=model, temperature=0) #直接访问OpenAI的GPT服务``#llm = AzureChatOpenAI( model_name=model, temperature=0, max_tokens=200) # 通过Azure的OpenAI服务``#根据查询的结果结果返回给大模型,大模型再组装后进行返回``def query_baidu(question):`      `template = """Between >>> and <<< are the raw search result text from web.`      `Extract the answer to the question '{query}' or say "not found" if the information is not contained.`      `Use the format`      `Extracted:<answer or "not found">`      `>>> {requests_result} <<<`      `Extracted:"""``   `      `PROMPT = PromptTemplate(`          `input_variables=["query", "requests_result"],`          `template=template,`      `)``   `      `inputs = {`          `"query": question,`          `"url": "http://www.baidu.com/s?wd=" + question.replace(" ", "+")`      `}`      `requests_chain = LLMRequestsChain(llm_chain = LLMChain(llm=llm, prompt=PROMPT), output_key="query_info", verbose=True)`      `res = requests_chain.run(inputs)`      `return res``   ``#python 程序入口``if __name__ == "__main__":`   `print(query_baidu("今天长沙的天气?"))`   
四、Function Calling+LangChain的应用场景
4.1 实时数据获取与处理

在金融市场分析中,Function Calling+LangChain架构可以帮助模型实时获取市场数据,进行分析并提供最新的投资建议。在新闻与信息监控中,模型可以实时跟踪热点事件,提供及时的信息更新。

4.2 业务流程自动化

在客户服务和支持方面,通过与客户关系管理系统的交互,模型可以自动处理客户查询,提高客户满意度。此外,作为自动化办公助手,模型可以处理日常的办公任务,如安排会议、发送邮件等,提高工作效率。

4.3 复杂决策支持

在智能推荐系统中,Function Calling+LangChain架构可以根据用户的实时数据和偏好,提供个性化的推荐。在供应链管理中,模型可以与供应链系统进行交互,优化库存管理和物流安排,提升整体运营效率。

五、Function Calling+LangChain的优势与挑战
5.1 优势分析

Function Calling与LangChain的结合,使得LLMs不仅限于语言生成,而是能够参与到实际的业务流程中。通过实时获取和处理数据,模型的实用性和应用范围得到了极大的提升,增强了与用户的交互能力。

5.2 面临的挑战

尽管Function Calling与LangChain架构带来了诸多优势,但也面临一些挑战。首先是安全与隐私问题,如何确保数据的安全传输和存储是一个重要课题。其次,技术实现的难度较高,需要投入大量的资源和精力。此外,该架构的实现也涉及到较高的成本,需要企业在预算和资源分配上做出合理的规划。

六、未来展望
6.1 技术趋势预测

随着技术的不断发展,Function Calling与LangChain的结合将变得更加智能和高效。未来,我们可以预见到更多跨领域的应用,模型将能够在更多复杂的场景中提供解决方案。

6.2 对企业与个人的影响

Function Calling与LangChain架构将推动企业的数字化转型,提升企业的运营效率和竞争力。同时,个人用户也将从中受益,获得更高效的生产力工具,改善工作和生活方式。

总结

Function Calling与LangChain架构为LLMs的发展带来了新的契机,使其能够超越纯粹的语言生成能力,参与到实际的业务流程和复杂决策中。通过这一技术架构,LLMs的应用范围得到了极大的扩展,为企业和个人带来了更多的价值。未来,我们期待看到更多企业和开发者利用这一技术,实现业务的创新和发展。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值