ChatGPT 基于海量的训练数据生成答案,所以它无法回答训练数据中没有的信息或搜索信息
。人们希望 ChatGPT 具有对话以外的各种功能,例如“我想管理我的待办事项列表”。
函数调用是对此类请求的响应。 通过使用函数调用,ChatGPT 现在可以在生成答案时使用用户提供的函数!
例如,如果要添加一个查看天气的函数,可以定义一个确定天气预报 API 的函数。下面是示意图
函数
我们定义了一个获取天气函数 。这是一个常规的python 函数。
def weather_function(location):
match location:
case "无锡" | "wuxi":
weather = "晴天"
case "苏州"| "suzhou":
weather = "多云"
case "常州" | "changzhou":
weather = "雨"
case _ :
weather = "不清楚"
weather_answer = [
{"天气": weather}
]
return json.dumps(weather_answer)
例-1--openAI function calling
from openai import OpenAI
import json
client = OpenAI(
api_key="sk-xxxxxx",
base_url="https://api.chatanywhere.tech/v1"
)
def weather_function(location):
match location:
case "无锡" | "wuxi":
weather = "晴天"
case "苏州"| "suzhou":
weather = "多云"
case "常州" | "changzhou":
weather = "雨"
case _ :
weather = "不清楚"
weather_answer = [
{"天气": weather}
]
return json.dumps(weather_answer)
functions = [
{
"name": "weather",
"description": "了解天气",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "输入您想要了解天气的位置。 示例:东京",
},
},
"required": ["location"],
},
}
]
messages = [
{
"role": "system",
"content": "You are a useful assistant."
},
{
"role": "user",
"content": "无锡天气怎么样?"
},
]
print(messages[1]["content"])
def role_function_conversation(message):
response = client.chat.completions.create(
model="gpt-3.5-turbo-0613",
messages = message,
temperature=0,
functions= functions,
function_call="auto",
)
message = response.choices[0].message.content
print(message)
completion = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
functions = functions,
function_call = {
"name": functions[0]["name"]
}
)
message=completion.choices[0].message
if(message.function_call):
function_name = message.function_call.name
arguments = json.loads(message.function_call.arguments)
if (function_name == "weather"):
weatherNow=weather_function(location=arguments.get('location'))
messages.append(message)
messages.append({"role": "function", "name": "weather", "content": weatherNow})
#print(messages)
role_function_conversation(messages)
从上面的程序看,功能调用被分成两段,分别访问两次大模型,第一次根据functions 模板获取函数的参数location,第二次真正调用 weather_function函数。然后将调用的结果交给大模型生成输出。
例-2 langchain Agent方式
这个程序使用Langchain Agent 方式调用函数,简约了许多。
import json
import os
from langchain_openai import ChatOpenAI
from langchain.agents import initialize_agent, Tool
from langchain.agents.mrkl import prompt
os.environ['OPENAI_API_KEY'] ="sk-xxxxx"
os.environ['OPENAI_BASE_URL'] ="https://api.chatanywhere.tech/v1"
def weather_function(location):
match location:
case "无锡" | "wuxi":
weather = "晴天"
case "苏州"| "suzhou":
weather = "多云"
case "常州" | "changzhou":
weather = "雨"
case _ :
weather = "不清楚"
weather_answer = [
{"天气": weather}
]
return json.dumps(weather_answer)
def lang_chain_agent(text):
llm = ChatOpenAI(model_name="gpt-3.5-turbo",base_url="https://api.chatanywhere.tech/v1")
tools = [
Tool(
name = "Weather",
func=weather_function,
description="输入你希望了解天气的位置,例如 无锡",
)
]
agent = initialize_agent(
tools,
llm,
agent="zero-shot-react-description",
agent_kwargs=dict(suffix='Answer should be in chinese.' + prompt.SUFFIX),
verbose=True,
return_intermediate_steps=True)
response = agent({"input": text})
return response
lang_chain_agent("常州天气如何?")
例-3 langchain-functioncall方式
这个程序利用langchain 实现函数调用。
import os
import json
from langchain.schema import (
HumanMessage,
FunctionMessage
)
from langchain_openai import ChatOpenAI
os.environ['OPENAI_API_KEY'] ="sk-xxxxxxxx"
os.environ['OPENAI_BASE_URL'] ="https://api.chatanywhere.tech/v1"
def weather_function(location):
match location:
case "无锡" | "wuxi":
weather = "晴天"
case "苏州"| "suzhou":
weather = "多云"
case "常州" | "changzhou":
weather = "雨"
case _ :
weather = "不清楚"
weather_answer = [
{"天气": weather}
]
return json.dumps(weather_answer)
def lang_chain_with_function_calling(text):
functions = [
{
"name": "weather",
"description": "了解天气",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "输入您想要了解天气的位置。 示例:东京",
},
},
"required": ["location"],
},
}
]
messages=[HumanMessage(content=text)]
llm = ChatOpenAI(model_name="gpt-3.5-turbo",base_url="https://api.chatanywhere.tech/v1", temperature=0)
message = llm.predict_messages(
messages, functions=functions
)
if message.additional_kwargs:
function_name = message.additional_kwargs["function_call"]["name"]
arguments = json.loads(message.additional_kwargs["function_call"]["arguments"])
function_response = weather_function(
location=arguments.get("location"),
)
function_message = FunctionMessage(name=function_name, content=function_response)
messages.append(function_message)
second_response = llm.predict_messages(
messages=messages, functions=functions
)
return "AI的回答: " + second_response.content
else:
return "AI的回答: " + message.content
print(lang_chain_with_function_calling("无锡的天气怎么样?"))
结束语
这里介绍了三种大模型函数调用的方法。还可以调用多个函数,比如如果要使用大模型实现“如果天黑了,就关上灯” ,我觉得要调用两个函数
CheckDarkness 函数
判断是否天黑。
LightControl 函数
控制灯光。
下一次来研究怎么实现吧!