重要提醒:本文乃个人思考笔记,不构成任何投资建议。
若问当下全球最炙手可热的风口是什么?想必大家会不约而同回答“AI大模型”。
2022年11月30日OpenAI旗下的AI大模型ChatGPT的横空出世,使得通用AI大模型瞬间在全球掀起了新一轮人工智能产业发展的浪潮。
因为AI大模型具备促进生产力跨越式发展的潜力,因此成了主要经济体和大公司竞相追逐的焦点,科技巨头竞相布局并推出自己的大模型。
IDC数据显示,2023年全球人工智能IT总投资规模预计达到1540亿美元,同比增长达19.6%。
这轮大模型浪潮下,人工智能(AI)成为了过去1年全球最重要的投资主线,其中最大的赢家当属英伟达,因为英伟达的高性能GPU芯片是各大公司创建AI大模型的算力基础设施。
由于高性能GPU的需求火箭般速度增长,使得英伟达仅在2023年市值就暴涨了240%,更让人咋舌的是这种夸张的涨幅还没有停止的迹象。
就在2月22日,英伟达公布了超预期财报,第二天(周四)英伟达股价飙涨16.4%,单日市值飙升2770亿美元逼近2万亿美元,位列美股市值第三。进入2024年,英伟达市值累计涨幅已达60%。
正当有人讨论现在是不是AI过热,是否存在类似2000年互联网泡沫风险的时候,2月16日OpenAI发布的全新长视频大模型Sora再一次震撼世界,也同时打消了“AI过热”的担忧。
相较于此前的视频生成模型,Sora模型可以一次生成一分钟的高清较流畅长视频,Sora能够模拟对世界状态产生简单影响的行为,将文生视频的能力推向了全新的高度。
可以预见,2024年,人工智能大模型将迈入赋能千行百业的关键期,孕育催生未来产业新模式、新业态,这是一个大家无法忽视的时代潮流。
又因为人工智能可以大幅提升人类社会生产力,甚至带来新的经济增量机遇,以及大幅提升国家的竞争力。因此,人工智能的竞争已不再局限于公司行业层面,而是上升到国家发展、安全的高度。
为了加快我国科技转型升级,提升我国AI技术全球竞争力,我国有关部门最近多次出台相关政策和行动,比如:
-
2024年1月31日,工信部等七部门也在《关于推动未来产业创新发展的实施意见》中提出,要打造超大规模新型智算中心,加快突破GPU芯片、集群低时延互连网络、异构资源管理等技术,建设超大规模智算中心,满足大模型迭代训练和应用推理需求。
-
2024年2月19日,国资委召开“AI赋能产业焕新”中央企业人工智能专题推进会。会议强调中央企业要在人工智能领域实现更好发展、发挥更大作用,加快布局和发展智能企业、加快建设一批智能算力中心,开展AI+专项行动等。会上10家中央企业共同签订倡议书,提出将主动向社会开放人工智能应用场景。
-
2024年2月23日《新闻联播》报道央视推出文生视频AI动画片《千秋诗颂》,将语文教材里的200+诗词转换为动画片。(PS:有小朋友的家长可以格外关注,寓教于乐好场景)
综上所述,不管是科技界、产业界、投资界还是国家制定发展计划层面,今年AI仍然是科技投资的主线。
随着国内外各类AI大模型不断迭代进化,以及应用场景不断丰富拓展,AI大模型将越来越为人使用、被人需要,行业将必然获得蓬勃发展。
那么,作为普通人如何抓住这轮机遇呢?
一方面在职业发展要顺应智能化的大趋势,远离容易被人工智能取代的领域,增强自身不可替代的能力;另一方面可以直接投身于人工智能行业和公司助推人工智能的发展并实现人生价值。
我们每个人都要关注甚至参与这轮人工智能突进的潮流,这样才能事半功倍实现自我人生价值。
如果不能从事人工智能行业,还有一种较低门槛深度参与人工智能潮流,那就是投资人工智能相关的指数基金。
有人可能会说,我国人工智能不管是硬件、软件还是应用都和美国有差距,这样的情况下还值得投资吗?
我认为这才是更值得我们投资中国人工智能的原因,因为有差距,才会有更大的增长前景,更宽广的增长空间。
就像造车造船、航天航空、新能源发电等我国都从追赶达到领先,我认为我国超大规模市场、庞大资本和人才以及政府大力支持下我国人工智能会从跟跑升至并跑甚至领跑的地位。
360创始人周鸿祎最近也表示,中美在AI上的差距主要在于“确定技术方向”上**,一旦方向确定,中国的优势是学习能力很快,中美在AI上的差距应该能在一两年内追上。**其还表示,2024年或将成为中国在AI领域的“应用之年”,相信今年大模型将在许多企业的垂直领域大有可为。
做多以人工智能为核心的中国数字经济一方面是基于其今后广阔的发展空间,另一方面则是基于其当下极其压制的估值,估值历史底部,安全边际非常宽广。
如下图所示,恒生科技指数三大数据走势图,PE/PB表示估值位于历史底部,而ROE则表示中国互联网科技企业的盈利能力在回暖。
恒生科技指数是中国人工智能和数字经济典型代表,其囊括了中国头部互联网科技公司,因此也基本上也可以代表其他互联网指数也处于估值历史底部。
对于中国的投资朋友来说,做多中国人工智能和数字经济相对而言是一项比较好的选择,顺着时代发展的潮流走无疑更容易获得成功。
不过,普通投资者由于精力有限难以深度研究日新月异的科技公司,因此,如果真的看好人工智能和数字经济板块,投资相应的指数基金或许是更好的选择。
如下所示,是我筛选出的被广泛接受的人工智能和数字经济相关指数基金,如果看好中国人工智能和数字经济的发展,可考虑恒生科技指数ETF(比如场外:A类013402、C类013403;场内:513180)和人工智能AI ETF(场内:515070;场外:A类008585、C类008586)。
这两个指数聚焦中国优秀AI科技公司,也顺应了我国数字经济发展方向。
《中国人工智能计算力发展评估报告》显示,2023年我国人工智能算力市场规模预估达到664亿元,同比增长82.5%。到2027年之前,中国智能算力规模年复合增长率将达33.9%,同期通用算力规模年复合增长率为16.6%。
不管是AI大模型,还是元宇宙和云服务,都代表了数字化的发展大趋势。当代社会,数字经济实体核心就是那些互联网数字服务公司,就连传统工业也在加速信息化、数字化呢!
考虑到估值位于历史底部,发展处于爆发增长的早期,此时不做多,更待何时呢?
大模型岗位需求
大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。
-END-
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓