【实测】5分钟搞定小红书爆款火柴人心理学视频!Coze工作流一键生成太强了,喂饭级别教程,强烈建议收藏!

今天给大家分享一个超实用的短视频制作方法,用"扣子工作流"5分钟就能生成专业级的小红书爆款视频。特别适合想做自媒体但不会剪辑的新手!

本文会详细讲解如何利用扣子工作流,仅需输入一个主题,便能在短时间内生成一份完整的小红书爆款视频,以火柴人心理学视频为例进行说明。

img

火柴人心理学视频-Coze工作流-整体流程如下:

img

Coze工作流制作详细步骤如下:

Coze官方网站: https://www.coze.cn/studio

一、创建工作流

从开发平台进入,工作空间->资源库->新建资源->工作流

img

二、工作流制作

1. 开始节点(设置心理学话题、视频作者、定制LOGO)

img

2. 大模型节点(根据指定的心理学话题输出相关内容)

img

img

系统提示词:


# 角色
你是一位专业且资深的心理学博士,同时作为小红书上极具影响力的优质视频传播者,尤其擅长以黑白简笔画火柴人为特色,制作专业且通俗易懂的心理学相关视频,深受大众喜爱。

## 技能
# 技能 1: 生成标题
1. 精准生成一个 6 - 8 字以内适合作为 3:4 竖版封面图中间标题的内容,标题需紧扣心理学主题,富有吸引力与话题性。例如:“为什么过得不快乐”。

# 技能 2: 生成一个心理学的故事
基于心理学专业知识,创作一个完整且生动的心理学故事。故事需包含清晰的情境描述、合理的心理机制分析以及实用的应对策略等维度。
1. 运用精通的心理学核心理论体系与应用场景知识,将专业心理学概念转化为通俗易懂、大众易接受的表述。构建完整且严谨的心理学知识框架,保证内容具备高度的科学性与实用性。
2. 充分发挥视觉呈现能力,将抽象的心理概念巧妙转化为简洁明了的黑白火柴人风格视觉表达。熟练掌握视频分镜与节奏控制技巧,显著提升内容的吸引力。
3. 善于从生活中精准选取贴近大众、具有代表性的典型案例进行深入的心理分析。从情境描述、心理机制、应对策略等多个维度展开全面且细致的剖析,将理论与实践完美结合,增强内容的实用性。
4. 熟练掌握总分结构的文案创作方法,确保段落之间逻辑清晰、层次分明。精心设计极具吸引力的开篇和具有明确行动指导性的结尾,提升内容的整体质量。

## 限制:
- 只围绕心理学领域以及生成封面图标题和火柴人文生图提示词相关内容进行回复,坚决拒绝回答无关话题。
- 输出内容需严格符合上述技能要求,绝不能偏离框架。 
- 所创作的心理学科普内容需 100%基于科学验证,每篇文章必须包含至少 3 个实用的心理学洞见。
- 要通过黑白火柴人视频形式提升内容理解效率,为每个心理学概念提供至少 1 个贴近生活的应用案例。 

用户提示词:

根据主题[{{input}}]生成标题和一个30S左右的文案
3. 分镜脚本节点(心理学相关内容,生成中英文字幕、文生图提示词)

img

img

系统提示词


# 角色
你是一位专业且资深的火柴人视频创作者,拥有心理学博士学位,在火柴人视频创作领域经验极为丰富。你不仅能够深入理解用户需求,还擅长依据给定关键词,精心创作出高质量的简笔画火柴人视频分镜脚本、相应字幕以及画面提示词。

## 技能
# 技能 1: 生成火柴人视频相关内容
1. 仔细从用户给到的{{desc}}中合理分割得出字幕内容。
2. 将分割得出的字幕另外输出一个对应的英文翻译版本。
3. 根据分割出来的每一句内容,生成符合心理学主题的火柴人黑白简笔画图案的详细描述词。
4. 对生成的分镜脚本,检查动作描述是否清晰明确,若不清晰需进一步细化。
5. 科学合理地设置分镜脚本的时长,确保整体视频节奏流畅。

## 限制:
- 仅围绕生成简笔画线条火柴人视频相关内容进行回复,坚决拒绝回答无关话题。
- 所输出的分镜脚本、字幕、画面提示词必须严格符合相应要求,任何内容都不能偏离框架要求。
- 分镜脚本的动作描述要精准清晰,时长设置要科学合理且符合实际创作逻辑。

用户提示词


用户的输入标题[{{title}}]
用户的输入字幕文案[{{desc}}]
4. 语音合成节点(字幕生成语音音频)

img

5. 批量生成图片节点(根据文生图提示词生成适配字幕的图片)

img

批处理体包含3个节点,循环生成图片

5.1 图像生成节点

img

正向提示词

根据主题[{{wenshengtu}}]生成一个以黑白简笔画火柴人为特色的心理学图片,生成的火柴人必须是黑白简笔画风格,背景为白色,其他的物品可以是不同颜色
5.2 抠图节点

img

5.3 画板节点

img

img

6. 剪映节点
6.1 创建草稿

img

6.2 合成视频

img

6.2.1 注册剪映插件

生成剪映草稿需要使用第三方插件,该插件每天提供免费额度,大家可先使用免费额度进行测试。

大家可以复制以下链接注册,我们双方都能有一块钱。

https://ts.fyshark.com/#/login?user_id=42258

6.2.2 工作流中添加插件

搜索插件:在插件市场中搜索所需插件。

img

img

6.2.3 下载剪映小助手:从官网下载剪映小助手

img

设置剪映草稿路径:点击小助手的个人空间,设置剪映草稿路径。设置完成后,生成的草稿将自动出现在剪映中,否则需要手动拖动文件路径。

img

获取剪映草稿路径的方法

img

7. 结束节点

img

三、工作流的测试

1. 回到扣子空间,设置参数,试运行

img

2. 工作流执行成功,获取到剪映草稿地址

img

3. 复制剪映草稿地址,粘贴到剪映小助手

img

4. 草稿将自动输出到剪映草稿目录

​ 打开剪映,查看生成的草稿,第一个黑色的就是

img

5. 双击打开查看效果视频

img

以上就是所有工作流制作和使用教程内容。

宝子们,你学会了吗?

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

### 使用 Coze 工作流实现从小红书中批量提取数据 要通过 Coze 工作流实现从小红书平台批量提取数据的功能,可以按照以下方法设计流程。需要注意的是,由于应用获取的数据可能存在延迟以及排序逻辑上的局限性[^1],因此在实际操作过程中需额外验证所提取数据的准确性。 #### 数据抓取与处理 Coze 工作流支持多种自动化任务配置,其中包括网络爬虫、API调用等功能模块。以下是具体的技术方案: 1. **设置 API 接口连接** 如果目标小红书账户开放了标准接口,则优先考虑利用官方提供的 RESTful 或 GraphQL 类型 API 来请求所需资源。例如,可以通过 POST 请求传递参数指定需要查询的目标字段(如粉丝数、点赞量等),并接收 JSON 响应体作为原始素材。 ```python import requests url = 'https://api.xiaohongshu.com/endpoint' headers = {'Authorization': 'Bearer YOUR_ACCESS_TOKEN'} payload = { "operationName": "GetUserDetails", "variables": {"userId": "example_user_id"}, "query": """ query GetUserDetails($userId: ID!) { user(id: $userId) { followersCount likesReceivedTotal } } """} response = requests.post(url, json=payload, headers=headers) data = response.json() ``` 2. **解析 HTML 页面结构** 当无法依赖正式渠道时,可借助 Selenium WebDriver 或 Beautiful Soup 等工具模拟浏览器行为加载动态生成的内容片段,并从中抽取特定标签内的文字信息。不过这种方法容易受到反爬机制干扰而失败率较高,建议仅用于实验性质的任务场景下尝试使用。 3. **清洗杂乱无章的信息源** 针对已经收集回来的大规模文本记录集合,往往还需要进一步整理才能满足后续加工需求。比如将混杂在一起的不同类别项目分开存储以便于单独检索;或者剔除掉无关紧要的部分只保留核心要素等等。这里提到过的 Excel 表格分割技巧就是一个很好的例子[^2]。 4. **保存最终成果物** 完成上述各阶段之后就可以着手安排导出环节啦~常见的文件格式包括但不限于 CSV、XLS(X) 和 PDF 文件形式。对于那些希望长期存档留证的朋友来说,后者无疑更加稳妥可靠些哦~ ```bash pandas.DataFrame(data).to_csv('output.csv', index=False) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值