CQUPT Python 候先生爬楼梯

侯先生爬楼梯的问题是一个动态规划的经典实例。通过状态转移公式fun(n) = fun(n-1) + fun(n-2),可以计算出从第1级到第n级楼梯的不同爬法。给定1到40之间的整数n,例如n=4时,有3种不同的爬法。此问题的解决方案通常使用递归或列表来实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【问题描述】

侯先生每天都会爬楼梯锻炼身体,他有时候一次上跨一级,有时候一次上跨两级...有一天侯先生想弄明白一个很难的问题:从最下面的第1级开始到顶端的第n级一共有多少种走法呢?比如n是3时,有两种走法(或者直接从第1级上跨两步到第3级,或者从第1级跨一步到2级再跨一步到第3级)。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬

请你帮帮侯先生,给你n(1<n<40)的值,你帮忙计算并输出有多少种爬到顶端的方法。

【输入形式】

输入n的值,n是1到40之间的整数。

【输出形式】

输出一共有多少种从第1级台阶到第n级台阶的走法。

【样例输入】

4

【样例输出】

3

【完整代码】

def fun(n):
    if n == 1:
        return 0
    elif n == 2:
        return 1
    elif n == 3:
        return 2
    else:
        return fun(n - 1) + fun(n - 2)

n = int(input())
print(fun(n))

【代码讲解】

状态转移式:fun(n) = fun(n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值