python数据分析电商用户行为,看完这一篇就够了,2024年最新面试考哪些

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
img

正文

查看处理好的数据

behavior[:10]

复制代码

OUTPUT

user_id sku_id action_time type date hour weekday

0 1455298 208441 2018-04-11 15:21:43 pv 2018-04-11 15 Wednesday

1 1455298 334318 2018-04-11 15:14:54 pv 2018-04-11 15 Wednesday

2 1455298 237755 2018-04-11 15:14:13 pv 2018-04-11 15 Wednesday

3 1455298 6422 2018-04-11 15:22:25 pv 2018-04-11 15 Wednesday

4 1455298 268566 2018-04-11 15:14:26 pv 2018-04-11 15 Wednesday

5 1455298 115915 2018-04-11 15:13:35 pv 2018-04-11 15 Wednesday

6 1455298 208254 2018-04-11 15:22:16 pv 2018-04-11 15 Wednesday

7 1455298 177209 2018-04-14 14:09:59 pv 2018-04-14 14 Saturday

8 1455298 71793 2018-04-14 14:10:29 pv 2018-04-14 14 Saturday

9 1455298 141950 2018-04-12 15:37:53 pv 2018-04-12 15 Thursday

复制代码


四. 分析模型构建分析指标


  1. 流量指标分析

  2. 用户消费频次分析

  3. 用户行为在时间纬度的分布

  4. 用户行为转化漏斗

  5. 用户留存率分析

  6. 商品销量分析

  7. RFM用户价值分层


1.流量指标分析

pv、uv、消费用户数占比、消费用户总访问量占比、消费用户人均访问量、跳失率

  • PV UV

总访问量

pv = behavior[behavior[‘type’] == ‘pv’][‘user_id’].count()

总访客数

uv = behavior[‘user_id’].nunique()

消费用户数

user_pay = behavior[behavior[‘type’] == ‘pay’][‘user_id’].unique()

日均访问量

pv_per_day = pv / behavior[‘date’].nunique()

人均访问量

pv_per_user = pv / uv

消费用户访问量

pv_pay = behavior[behavior[‘user_id’].isin(user_pay)][‘type’].value_counts().pv

消费用户数占比

user_pay_rate = len(user_pay) / uv

消费用户访问量占比

pv_pay_rate = pv_pay / pv

消费用户人均访问量

pv_per_buy_user = pv_pay / len(user_pay)

复制代码

SQL

SELECT count(DISTINCT user_id) UV,

(SELECT count(*) PV from behavior_sql WHERE type = ‘pv’) PV

FROM behavior_sql;

SELECT count(DISTINCT user_id)

FROM behavior_sql

WHERE WHERE type = ‘pay’;

SELECT type, COUNT(*) FROM behavior_sql

WHERE

user_id IN

(SELECT DISTINCT user_id

FROM behavior_sql

WHERE type = ‘pay’)

AND type = ‘pv’

GROUP BY type;

复制代码

print(‘总访问量为 %i’ %pv)

print(‘总访客数为 %i’ %uv)

print(‘消费用户数为 %i’ %len(user_pay))

print(‘消费用户访问量为 %i’ %pv_pay)

print(‘日均访问量为 %.3f’ %pv_per_day)

print(‘人均访问量为 %.3f’ %pv_per_user)

print(‘消费用户人均访问量为 %.3f’ %pv_per_buy_user)

print(‘消费用户数占比为 %.3f%%’ %(user_pay_rate * 100))

print(‘消费用户访问量占比为 %.3f%%’ %(pv_pay_rate * 100))

复制代码

OUTPUT

总访问量为 6229177

总访客数为 728959

消费用户数为 395874

消费用户访问量为 3918000

日均访问量为 389323.562

人均访问量为 8.545

消费用户人均访问量为 9.897

消费用户数占比为 54.307%

消费用户访问量占比为 62.898%

复制代码

消费用户人均访问量和总访问量占比都在平均值以上,有过消费记录的用户更愿意在网站上花费更多时间,说明网站的购物体验尚可,老用户对网站有一定依赖性,对没有过消费记录的用户要让快速了解产品的使用方法和价值,加强用户和平台的黏连。

  • 跳失率

跳失率:只进行了一次操作就离开的用户数/总用户数

attrition_rates = sum(behavior.groupby(‘user_id’)[‘type’].count() == 1) / (behavior[‘user_id’].nunique())

复制代码

SQL

SELECT

(SELECT COUNT(*)

FROM (SELECT user_id

FROM behavior_sql GROUP BY user_id

HAVING COUNT(type)=1) A) /

(SELECT COUNT(DISTINCT user_id) UV FROM behavior_sql) attrition_rates;

复制代码

print(‘跳失率为 %.3f%%’ %(attrition_rates * 100) )

复制代码

OUTPUT

跳失率为 22.585%

复制代码

整个计算周期内跳失率为22.585%,还是有较多的用户仅做了单次操作就离开了页面,需要从首页页面布局以及产品用户体验等方面加以改善,提高产品吸引力。

2. 用户消费频次分析

单个用户消费总次数

total_buy_count = (behavior[behavior[‘type’]==‘pay’].groupby([‘user_id’])[‘type’].count()

.to_frame().rename(columns={‘type’:‘total’}))

消费次数前10客户

topbuyer10 = total_buy_count.sort_values(by=‘total’,ascending=False)[:10]

复购率

re_buy_rate = total_buy_count[total_buy_count>=2].count()/total_buy_count.count()

复制代码

SQL

#消费次数前10客户

SELECT user_id, COUNT(type) total_buy_count

FROM behavior_sql

WHERE type = ‘pay’

GROUP BY user_id

ORDER BY COUNT(type) DESC

LIMIT 10

#复购率

CREAT VIEW v_buy_count

AS SELECT user_id, COUNT(type) total_buy_count

FROM behavior_sql

WHERE type = ‘pay’

GROUP BY user_id;

SELECT CONCAT(ROUND((SUM(CASE WHEN total_buy_count>=2 THEN 1 ELSE 0 END)/

SUM(CASE WHEN total_buy_count>0 THEN 1 ELSE 0 END))*100,2),‘%’) AS re_buy_rate

FROM v_buy_count;

复制代码

topbuyer10.reset_index().style.bar(color=‘skyblue’,subset=[‘total’])

复制代码

单个用户消费总次数可视化

tbc_box = total_buy_count.reset_index()

fig, ax = plt.subplots(figsize=[16,6])

ax.set_yscale(“log”)

sns.countplot(x=tbc_box[‘total’],data=tbc_box,palette=‘Set1’)

for p in ax.patches:

ax.annotate(‘{:.2f}%’.format(100*p.get_height()/len(tbc_box[‘total’])), (p.get_x() - 0.1, p.get_height()))

plt.title(‘用户消费总次数’)

复制代码

整个计算周期内,最高购物次数为133次,最低为1次,大部分用户的购物次数在6次以下,可适当增加推广,完善购物体验,提高用户消费次数。购物次数前10用户为1187177、502169等,应提高其满意度,增大留存率。

print(‘复购率为 %.3f%%’ %(re_buy_rate * 100) )

复制代码

OUTPUT

复购率为 13.419%

复制代码

复购率较低,应加强老用户召回机制,提升购物体验,也可能因数据量较少,统计周期之内的数据 无法解释完整的购物周期,从而得出结论有误。

3. 用户行为在时间纬度的分布
  • 日消费次数、日活跃人数、日消费人数、日消费人数占比、消费用户日人均消费次数

日活跃人数(有一次操作即视为活跃)

daily_active_user = behavior.groupby(‘date’)[‘user_id’].nunique()

日消费人数

daily_buy_user = behavior[behavior[‘type’] == ‘pay’].groupby(‘date’)[‘user_id’].nunique()

日消费人数占比

proportion_of_buyer = daily_buy_user / daily_active_user

日消费总次数

daily_buy_count = behavior[behavior[‘type’] == ‘pay’].groupby(‘date’)[‘type’].count()

消费用户日人均消费次数

consumption_per_buyer = daily_buy_count / daily_buy_user

复制代码

SQL

日消费总次数

SELECT date, COUNT(type) pay_daily FROM behavior_sql

WHERE type = ‘pay’

GROUP BY date;

日活跃人数

SELECT date, COUNT(DISTINCT user_id) uv_daily FROM behavior_sql

GROUP BY date;

日消费人数

SELECT date, COUNT(DISTINCT user_id) user_pay_daily FROM behavior_sql

WHERE type = ‘pay’

GROUP BY date;

日消费人数占比

SELECT

(SELECT date, COUNT(DISTINCT user_id) user_pay_daily FROM behavior_sql

WHERE type = ‘pay’

GROUP BY date) /

(SELECT date, COUNT(DISTINCT user_id) uv_daily FROM behavior_sql

GROUP BY date)

日人均消费次数

SELECT

(SELECT date, COUNT(type) pay_daily FROM behavior_sql

WHERE type = ‘pay’

GROUP BY date) /

(SELECT date, COUNT(DISTINCT user_id) uv_daily FROM behavior_sql

GROUP BY date)

复制代码

日消费人数占比可视化

柱状图数据

pob_bar = (pd.merge(daily_active_user,daily_buy_user,on=‘date’).reset_index()

.rename(columns={‘user_id_x’:‘日活跃人数’,‘user_id_y’:‘日消费人数’})

.set_index(‘date’).stack().reset_index().rename(columns={‘level_1’:‘Variable’,0: ‘Value’}))

线图数据

pob_line = proportion_of_buyer.reset_index().rename(columns={‘user_id’:‘Rate’})

fig1 = plt.figure(figsize=[16,6])

ax1 = fig1.add_subplot(111)

ax2 = ax1.twinx()

sns.barplot(x=‘date’, y=‘Value’, hue=‘Variable’, data=pob_bar, ax=ax1, alpha=0.8, palette=‘husl’)

ax1.legend().set_title(‘’)

ax1.legend().remove()

sns.pointplot(pob_line[‘date’], pob_line[‘Rate’], ax=ax2,markers=‘D’, linestyles=‘–’,color=‘teal’)

x=list(range(0,16))

for a,b in zip(x,pob_line[‘Rate’]):

plt.text(a+0.1, b + 0.001, ‘%.2f%%’ % (b*100), ha=‘center’, va= ‘bottom’,fontsize=12)

fig1.legend(loc=‘upper center’,ncol=2)

plt.title(‘日消费人数占比’)

复制代码

日活跃人数与日消费人数无明显波动,日消费人数占比均在20%以上。

消费用户日人均消费次数可视化

柱状图数据

cpb_bar = (daily_buy_count.reset_index().rename(columns={‘type’:‘Num’}))

线图数据

cpb_line = (consumption_per_buyer.reset_index().rename(columns={0:‘Frequency’}))

fig2 = plt.figure(figsize=[16,6])

ax3 = fig2.add_subplot(111)

ax4 = ax3.twinx()

sns.barplot(x=‘date’, y=‘Num’, data=cpb_bar, ax=ax3, alpha=0.8, palette=‘pastel’)

sns.pointplot(cpb_line[‘date’], cpb_line[‘Frequency’], ax=ax4, markers=‘D’, linestyles=‘–’,color=‘teal’)

x=list(range(0,16))

for a,b in zip(x,cpb_line[‘Frequency’]):

plt.text(a+0.1, b + 0.001, ‘%.2f’ % b, ha=‘center’, va= ‘bottom’,fontsize=12)

plt.title(‘消费用户日人均消费次数’)

复制代码

日消费人数在25000以上,日人均消费次数大于1次。

dau3_df = behavior.groupby([‘date’,‘user_id’])[‘type’].count().reset_index()

dau3_df = dau3_df[dau3_df[‘type’] >= 3]

复制代码

每日高活跃用户数(每日操作数大于3次)

dau3_num = dau3_df.groupby(‘date’)[‘user_id’].nunique()

复制代码

SQL

SELECT date, COUNT(DISTINCT user_id)

FROM

(SELECT date, user_id, COUNT(type)

FROM behavior_sql

GROUP BY date, user_id

HAVING COUNT(type) >= 3) dau3

GROUP BY date;

复制代码

fig, ax = plt.subplots(figsize=[16,6])

sns.pointplot(dau3_num.index, dau3_num.values, markers=‘D’, linestyles=‘–’,color=‘teal’)

x=list(range(0,16))

for a,b in zip(x,dau3_num.values):

plt.text(a+0.1, b + 300 , ‘%i’ % b, ha=‘center’, va= ‘bottom’,fontsize=14)

plt.title(‘每日高活跃用户数’)

复制代码

每日高活跃用户数在大部分4万以上,2018-04-04之前数量比较平稳,之后数量一直攀升,8号9号达到最高,随后下降,推测数据波动应为营销活动产生的。

高活跃用户累计活跃天数分布

dau3_cumsum = dau3_df.groupby(‘user_id’)[‘date’].count()

复制代码

SQL

SELECT user_id, COUNT(date)

FROM

(SELECT date, user_id, COUNT(type)

FROM behavior_sql

GROUP BY date, user_id

HAVING COUNT(type) >= 3) dau3

GROUP BY user_id;

复制代码

fig, ax = plt.subplots(figsize=[16,6])

ax.set_yscale(“log”)

sns.countplot(dau3_cumsum.values,palette=‘Set1’)

for p in ax.patches:

ax.annotate(‘{:.2f}%’.format(100*p.get_height()/len(dau3_cumsum.values)), (p.get_x() + 0.2, p.get_height() + 100))

plt.title(‘高活跃用户累计活跃天数分布’)

复制代码

统计周期内,大部分高活跃用户累计活跃天数在六天以下,但也存在高达十六天的超级活跃用户数量,对累计天数较高的用户要推出连续登录奖励等继续维持其对平台的黏性,对累计天数较低的用户要适当进行推送活动消息等对其进行召回。

#每日浏览量

pv_daily = behavior[behavior[‘type’] == ‘pv’].groupby(‘date’)[‘user_id’].count()

#每日访客数

uv_daily = behavior.groupby(‘date’)[‘user_id’].nunique()

复制代码

SQL

#每日浏览量

SELECT date, COUNT(type) pv_daily FROM behavior_sql

WHERE type = ‘pv’

GROUP BY date;

#每日访客数

SELECT date, COUNT(DISTINCT user_id) uv_daily FROM behavior_sql

GROUP BY date;

复制代码

每日浏览量可视化

fig, ax = plt.subplots(figsize=[16,6])

sns.pointplot(pv_daily.index, pv_daily.values,markers=‘D’, linestyles=‘–’,color=‘dodgerblue’)

x=list(range(0,16))

for a,b in zip(x,pv_daily.values):

plt.text(a+0.1, b + 2000 , ‘%i’ % b, ha=‘center’, va= ‘bottom’,fontsize=14)

plt.title(‘每日浏览量’)

复制代码

每日访客数可视化

fig, ax = plt.subplots(figsize=[16,6])

sns.pointplot(uv_daily.index, uv_daily.values, markers=‘H’, linestyles=‘–’,color=‘m’)

x=list(range(0,16))

for a,b in zip(x,uv_daily.values):

plt.text(a+0.1, b + 500 , ‘%i’ % b, ha=‘center’, va= ‘bottom’,fontsize=14)

plt.title(‘每日访客数’)

复制代码

浏览量和访客数每日变化趋势大致相同,2018-04-04日前后用户数量变化波动较大,4月4日为清明节假日前一天,各数据量在当天均有明显下降,但之后逐步回升,推测应为节假日营销活动或推广拉新活动带来的影响。

#每时浏览量

pv_hourly = behavior[behavior[‘type’] == ‘pv’].groupby(‘hour’)[‘user_id’].count()

#每时访客数

uv_hourly = behavior.groupby(‘hour’)[‘user_id’].nunique()

复制代码

SQL

每时浏览量

SELECT date, COUNT(type) pv_daily FROM behavior_sql

WHERE type = ‘pv’

GROUP BY hour;

每时访客数

SELECT date, COUNT(DISTINCT user_id) uv_daily FROM behavior_sql

GROUP BY hour;

复制代码

浏览量随小时变化可视化

fig, ax = plt.subplots(figsize=[16,6])

sns.pointplot(pv_hourly.index, pv_hourly.values, markers=‘H’, linestyles=‘–’,color=‘dodgerblue’)

for a,b in zip(pv_hourly.index,pv_hourly.values):

plt.text(a, b + 10000 , ‘%i’ % b, ha=‘center’, va= ‘bottom’,fontsize=12)

plt.title(‘浏览量随小时变化’)

复制代码

访客数随小时变化可视化

fig, ax = plt.subplots(figsize=[16,6])

sns.pointplot(uv_hourly.index, uv_hourly.values, markers=‘H’, linestyles=‘–’,color=‘m’)

for a,b in zip(uv_hourly.index,uv_hourly.values):

plt.text(a, b + 1000 , ‘%i’ % b, ha=‘center’, va= ‘bottom’,fontsize=12)

plt.title(‘访客数随小时变化’)

复制代码

浏览量及访客数随小时变化趋势一致,在凌晨1点到凌晨5点之间,大部分用户正在休息,整体活跃度较低。凌晨5点到10点用户开始起床工作,活跃度逐渐增加,之后趋于平稳,下午6点之后大部分人恢复空闲,浏览量及访客数迎来了第二波攀升,在晚上8点中到达高峰,随后逐渐下降。可以考虑在上午9点及晚上8点增大商品推广力度,加大营销活动投入,可取的较好的收益,1点到5点之间适合做系统维护。

用户各操作随小时变化

type_detail_hour = pd.pivot_table(columns = ‘type’,index = ‘hour’, data = behavior,aggfunc=np.size,values = ‘user_id’)

用户各操作随星期变化

type_detail_weekday = pd.pivot_table(columns = ‘type’,index = ‘weekday’, data = behavior,aggfunc=np.size,values = ‘user_id’)

type_detail_weekday = type_detail_weekday.reindex([‘Monday’,‘Tuesday’,‘Wednesday’,‘Thursday’,‘Friday’,‘Saturday’,‘Sunday’])

复制代码

SQL

用户各操作随小时变化

SELECT hour,

SUM(CASE WHEN behavior=‘pv’ THEN 1 ELSE 0 END)AS ‘pv’,

SUM(CASE WHEN behavior=‘fav’ THEN 1 ELSE 0 END)AS ‘fav’,

SUM(CASE WHEN behavior=‘cart’ THEN 1 ELSE 0 END)AS ‘cart’,

SUM(CASE WHEN behavior=‘pay’ THEN 1 ELSE 0 END)AS ‘pay’

FROM behavior_sql

GROUP BY hour

ORDER BY hour

用户各操作随星期变化

SELECT weekday,

SUM(CASE WHEN behavior=‘pv’ THEN 1 ELSE 0 END)AS ‘pv’,

SUM(CASE WHEN behavior=‘fav’ THEN 1 ELSE 0 END)AS ‘fav’,

SUM(CASE WHEN behavior=‘cart’ THEN 1 ELSE 0 END)AS ‘cart’,

SUM(CASE WHEN behavior=‘pay’ THEN 1 ELSE 0 END)AS ‘pay’

FROM behavior_sql

GROUP BY weekday

ORDER BY weekday

复制代码

tdh_line = type_detail_hour.stack().reset_index().rename(columns={0: ‘Value’})

tdw_line = type_detail_weekday.stack().reset_index().rename(columns={0: ‘Value’})

tdh_line= tdh_line[~(tdh_line[‘type’] == ‘pv’)]

tdw_line= tdw_line[~(tdw_line[‘type’] == ‘pv’)]

复制代码

用户操作随小时变化可视化

fig, ax = plt.subplots(figsize=[16,6])

sns.pointplot(x=‘hour’, y=‘Value’, hue=‘type’, data=tdh_line, linestyles=‘–’)

plt.title(‘用户操作随小时变化’)

复制代码

用户操作随小时变化规律与PV、UV随小时规律相似,与用户作息规律相关,加入购物车和付款两条曲线贴合比比较紧密,说明大部分用户习惯加入购物车后直接购买。关注数相对较少,可以根据用户购物车内商品进行精准推送。评论数也相对较少,说明大部分用户不是很热衷对购物体验进行反馈,可以设置一些奖励制度提高用户评论数,增大用用户粘性。

用户操作随星期变化可视化

fig, ax = plt.subplots(figsize=[16,6])

sns.pointplot(x=‘weekday’, y=‘Value’, hue=‘type’, data=tdw_line[~(tdw_line[‘type’] == ‘pv’)], linestyles=‘–’)

plt.title(‘用户操作随星期变化’)

复制代码

周一到周四工作日期间,用户操作随星期变化比较平稳,周五至周六进入休息日,用户操作明显增多,周日又恢复正常。

4. 用户行为转化漏斗

导入相关包

from pyecharts import options as opts

from pyecharts.charts import Funnel

import math

复制代码

behavior[‘action_time’] = pd.to_datetime(behavior[‘action_time’],format =‘%Y-%m-%d %H:%M:%S’)

复制代码

用户整体行为分布

type_dis = behavior[‘type’].value_counts().reset_index()

type_dis[‘rate’] = round((type_dis[‘type’] / type_dis[‘type’].sum()),3)

复制代码

type_dis.style.bar(color=‘skyblue’,subset=[‘rate’])

复制代码

用户整体行为中,有82.6%行为为浏览,实际支付操作仅占6.4,除此之外,用户评论及收藏的行为占比也较低,应当增强网站有用户之间的互动,提高评论数量和收藏率。

df_con = behavior[[‘user_id’, ‘sku_id’, ‘action_time’, ‘type’]]

复制代码

df_pv = df_con[df_con[‘type’] == ‘pv’]

df_fav = df_con[df_con[‘type’] == ‘fav’]

df_cart = df_con[df_con[‘type’] == ‘cart’]

df_pay = df_con[df_con[‘type’] == ‘pay’]

df_pv_uid = df_con[df_con[‘type’] == ‘pv’][‘user_id’].unique()

df_fav_uid = df_con[df_con[‘type’] == ‘fav’][‘user_id’].unique()

df_cart_uid = df_con[df_con[‘type’] == ‘cart’][‘user_id’].unique()

df_pay_uid = df_con[df_con[‘type’] == ‘pay’][‘user_id’].unique()

复制代码

  • pv - buy

fav_cart_list = set(df_fav_uid) | set(df_cart_uid)

复制代码

pv_pay_df = pd.merge(left=df_pv, right=df_pay, how=‘inner’, on=[‘user_id’, ‘sku_id’],

suffixes=(‘_pv’, ‘_pay’))

复制代码

pv_pay_df = pv_pay_df[(~pv_pay_df[‘user_id’].isin(fav_cart_list)) & (pv_pay_df[‘action_time_pv’] < pv_pay_df[‘action_time_pay’])]

复制代码

uv = behavior[‘user_id’].nunique()

pv_pay_num = pv_pay_df[‘user_id’].nunique()

pv_pay_data = pd.DataFrame({‘type’:[‘浏览’,‘付款’],‘num’:[uv,pv_pay_num]})

pv_pay_data[‘conversion_rates’] = (round((pv_pay_data[‘num’] / pv_pay_data[‘num’][0]),4) * 100)

复制代码

attr1 = list(pv_pay_data.type)

values1 = list(pv_pay_data.conversion_rates)

data1 = [[attr1[i], values1[i]] for i in range(len(attr1))]

复制代码

用户行为转化漏斗可视化

pv_pay=(Funnel(opts.InitOpts(width=“600px”, height=“300px”))

.add(

series_name=“”,

data_pair=data1,

gap=2,

tooltip_opts=opts.TooltipOpts(trigger=“item”, formatter=“{b} : {c}%”),

label_opts=opts.LabelOpts(is_show=True, position=“inside”),

itemstyle_opts=opts.ItemStyleOpts(border_color=“#fff”, border_width=1)

)

.set_global_opts(title_opts=opts.TitleOpts(title=“用户行为转化漏斗图”))

)

pv_pay.render_notebook()

复制代码

  • pv - cart - pay

pv_cart_df = pd.merge(left=df_pv, right=df_cart, how=‘inner’, on=[‘user_id’, ‘sku_id’],

suffixes=(‘_pv’, ‘_cart’))

复制代码

pv_cart_df = pv_cart_df[pv_cart_df[‘action_time_pv’] < pv_cart_df[‘action_time_cart’]]

pv_cart_df = pv_cart_df[~pv_cart_df[‘user_id’].isin(df_fav_uid)]

复制代码

pv_cart_pay_df = pd.merge(left=pv_cart_df, right=df_pay, how=‘inner’, on=[‘user_id’, ‘sku_id’])

复制代码

pv_cart_pay_df = pv_cart_pay_df[pv_cart_pay_df[‘action_time_cart’] < pv_cart_pay_df[‘action_time’]]

复制代码

uv = behavior[‘user_id’].nunique()

pv_cart_num = pv_cart_df[‘user_id’].nunique()

pv_cart_pay_num = pv_cart_pay_df[‘user_id’].nunique()

pv_cart_pay_data = pd.DataFrame({‘type’:[‘浏览’,‘加购’,‘付款’],‘num’:[uv,pv_cart_num,pv_cart_pay_num]})

pv_cart_pay_data[‘conversion_rates’] = (round((pv_cart_pay_data[‘num’] / pv_cart_pay_data[‘num’][0]),4) * 100)

复制代码

attr2 = list(pv_cart_pay_data.type)

values2 = list(pv_cart_pay_data.conversion_rates)

data2 = [[attr2[i], values2[i]] for i in range(len(attr2))]

复制代码

用户行为转化漏斗可视化

pv_cart_buy=(Funnel(opts.InitOpts(width=“600px”, height=“300px”))

.add(

series_name=“”,

data_pair=data2,

gap=2,

tooltip_opts=opts.TooltipOpts(trigger=“item”, formatter=“{b} : {c}%”),

label_opts=opts.LabelOpts(is_show=True, position=“inside”),

itemstyle_opts=opts.ItemStyleOpts(border_color=“#fff”, border_width=1)

)

.set_global_opts(title_opts=opts.TitleOpts(title=“用户行为转化漏斗图”))

)

pv_cart_buy.render_notebook()

复制代码

  • pv - fav - pay

pv_fav_df = pd.merge(left=df_pv, right=df_fav, how=‘inner’, on=[‘user_id’, ‘sku_id’],

suffixes=(‘_pv’, ‘_fav’))

复制代码

pv_fav_df = pv_fav_df[pv_fav_df[‘action_time_pv’] < pv_fav_df[‘action_time_fav’]]

pv_fav_df = pv_fav_df[~pv_fav_df[‘user_id’].isin(df_cart_uid)]

复制代码

pv_fav_pay_df = pd.merge(left=pv_fav_df, right=df_pay, how=‘inner’, on=[‘user_id’, ‘sku_id’])

复制代码

pv_fav_pay_df = pv_fav_pay_df[pv_fav_pay_df[‘action_time_fav’] < pv_fav_pay_df[‘action_time’]]

复制代码

uv = behavior[‘user_id’].nunique()

pv_fav_num = pv_fav_df[‘user_id’].nunique()

pv_fav_pay_num = pv_fav_pay_df[‘user_id’].nunique()

pv_fav_pay_data = pd.DataFrame({‘type’:[‘浏览’,‘收藏’,‘付款’],‘num’:[uv,pv_fav_num,pv_fav_pay_num]})

pv_fav_pay_data[‘conversion_rates’] = (round((pv_fav_pay_data[‘num’] / pv_fav_pay_data[‘num’][0]),4) * 100)

复制代码

attr3 = list(pv_fav_pay_data.type)

values3 = list(pv_fav_pay_data.conversion_rates)

data3 = [[attr3[i], values3[i]] for i in range(len(attr3))]

复制代码

用户行为转化漏斗可视化

pv_fav_buy=(Funnel(opts.InitOpts(width=“600px”, height=“300px”))

.add(

series_name=“”,

data_pair=data3,

gap=2,

tooltip_opts=opts.TooltipOpts(trigger=“item”, formatter=“{b} : {c}%”),

label_opts=opts.LabelOpts(is_show=True, position=“inside”),

itemstyle_opts=opts.ItemStyleOpts(border_color=“#fff”, border_width=1)

)

.set_global_opts(title_opts=opts.TitleOpts(title=“用户行为转化漏斗图”))

)

pv_fav_buy.render_notebook()

复制代码

  • pv - fav - cart - pay

pv_fav = pd.merge(left=df_pv, right=df_fav, how=‘inner’, on=[‘user_id’, ‘sku_id’],

suffixes=(‘_pv’, ‘_fav’))

复制代码

pv_fav = pv_fav[pv_fav[‘action_time_pv’] < pv_fav[‘action_time_fav’]]

复制代码

pv_fav_cart = pd.merge(left=pv_fav, right=df_cart, how=‘inner’, on=[‘user_id’, ‘sku_id’])

复制代码

pv_fav_cart = pv_fav_cart[pv_fav_cart[‘action_time_fav’]<pv_fav_cart[‘action_time’]]

复制代码

pv_fav_cart_pay = pd.merge(left=pv_fav_cart, right=df_pay, how=‘inner’, on=[‘user_id’, ‘sku_id’],

suffixes=(‘_cart’, ‘_pay’))

复制代码

pv_fav_cart_pay = pv_fav_cart_pay[pv_fav_cart_pay[‘action_time_cart’]<pv_fav_cart_pay[‘action_time_pay’]]

复制代码

uv = behavior[‘user_id’].nunique()

pv_fav_n = pv_fav[‘user_id’].nunique()

如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费学习大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
ction_time_cart’]<pv_fav_cart_pay[‘action_time_pay’]]

复制代码

uv = behavior[‘user_id’].nunique()

pv_fav_n = pv_fav[‘user_id’].nunique()

如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费学习大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
[外链图片转存中…(img-OoL1qFmE-1713363299202)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 8
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
电商用户行为分析是指通过对电商平台上的用户行为数据进行分析和挖掘,以了解用户行为特征、偏好和购买意向,从而为电商企业提供有针对性的营销策略和产品推荐。 Python作为一种功能强大且易于使用的编程语言,被广泛应用于电商用户行为分析。具体而言,使用Python可以进行以下方面的工作: 1. 数据收集与清洗:通过Python的网络爬虫技术,可以自动从电商平台上抓取用户行为数据,包括浏览记录、搜索记录、购买记录等。此外,使用Python的数据处理库,如Pandas,可以对收集到的数据进行清洗、去重和格式化。 2. 用户行为分析:利用Python数据分析库,如NumPy和SciPy,可以对用户行为数据进行统计分析,如用户活跃度、频次分布、购买转化率等。通过这些分析,可以对用户行为习惯和特征进行描绘,并对用户群体进行细分。 3. 推荐算法开发:借助Python的机器学习库,如Scikit-learn和TensorFlow,可以进行用户兴趣和偏好的挖掘,并基于这些信息开发个性化推荐算法。通过分析用户的购买历史、浏览记录和评价等数据,可以为用户提供更加精准的产品推荐。 4. 数据可视化:Python的数据可视化库,如Matplotlib和Seaborn,可以将用户行为数据进行可视化展示,如用户活跃趋势图、用户购买行为漏斗图等。通过直观的可视化图表,可以更好地理解用户行为模式和趋势。 综上所述,Python电商用户行为分析中扮演着重要的角色。它能够帮助电商企业更好地理解用户,挖掘用户价值,提升用户体验,从而有效提升销售额和市场竞争力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值