Python爬虫入门教程03:二手房数据爬取

打开开发者工具( F12或者鼠标右键点击检查 )选择 notework 查看数据返回的内容。

在这里插入图片描述

通过开发者工具可以看到,网站是静态网页数据,请求url地址是可以直接获取数据内容的。

url = ‘https://cs.lianjia.com/ershoufang/’

headers = {

‘User-Agent’: ‘Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36’

}

response = requests.get(url=url, headers=headers)

print(response.text)

如果你不知道,返回的数据中是否有你想要的内容,你有复制网页的内容,在pycharm的输出结果中进行搜索查看。

在这里插入图片描述

三、解析数据


既然网站是静态网页数据,那么就可以直接在开发者工具中 Elements 查看数据在哪

在这里插入图片描述

如上图所示,相关的数据内容都包含在 li 标签里面。通过 parsel 解析库,进行解析提取数据就可以了。

selector = parsel.Selector(response.text)

lis = selector.css(‘.sellListContent li’)

for li in lis:

标题

title = li.css(‘.title a::text’).get()

地址

positionInfo = li.css(‘.positionInfo a::text’).getall()

小区

community = positionInfo[0]

地名

address = positionInfo[1]

房子基本信息

houseInfo = li.css(‘.houseInfo::text’).get()

房价

Price = li.css(‘.totalPrice span::text’).get() + ‘万’

单价

unitPrice = li.css(‘.unitPrice span::text’).get().replace(‘单价’, ‘’)

发布信息

followInfo = li.css(‘.followInfo::text’).get()

dit = {

‘标题’: title,

‘小区’: community,

‘地名’: address,

‘房子基本信息’: houseInfo,

‘房价’: Price,

‘单价’: unitPrice,

‘发布信息’: followInfo,

}

print(dit)

当我运行的时候发现报错了。

在这里插入图片描述

IndexError: list index out of range 超出索引范围了。

遇事不要慌, 取0超出索引范围,说明数据并没有取到,所以我们要看一下 <精装好房...> 这个信息下面那一个是什么情况。

在这里插入图片描述

搜索发现,这个中间插入了一条广告,也是li标签里面的,所以做一个简单的判断就好了,它是一个广告并没有标题,判断是否有标题就可以了,有就爬取相关内容,没有就pass掉。

for li in lis:

标题

title = li.css(‘.title a::text’).get()

if title:

地址

positionInfo = li.css(‘.positionInfo a::text’).getall()

小区

community = positionInfo[0]

地名

address = positionInfo[1]

房子基本信息

houseInfo = li.css(‘.houseInfo::text’).get()

房价

Price = li.css(‘.totalPrice span::text’).get() + ‘万’

单价

unitPrice = li.css(‘.unitPrice span::text’).get().replace(‘单价’, ‘’)

发布信息

followInfo = li.css(‘.followInfo::text’).get()

dit = {

‘标题’: title,

‘小区’: community,

‘地名’: address,

‘房子基本信息’: houseInfo,

‘房价’: Price,

‘单价’: unitPrice,

‘发布信息’: followInfo,

}

print(dit)

在这里插入图片描述

这样就不会报错了。

四、保存数据(数据持久化)


和爬取豆瓣的电影信息是一样的,使用csv模块,把数据保存到Excel里面

创建文件

f = open(‘二手房数据.csv’, mode=‘a’, encoding=‘utf-8’, newline=‘’)

csv_writer = csv.DictWriter(f, fieldnames=[‘标题’, ‘小区’, ‘地名’, ‘房子基本信息’,

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
img

最后

Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

👉Python所有方向的学习路线👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

👉Python必备开发工具👈

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

👉Python全套学习视频👈

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

👉实战案例👈

学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。

因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。

👉大厂面试真题👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

tps://img-blog.csdnimg.cn/img_convert/0d8c31c50236a205928a1d8ae8a0b883.png)

👉大厂面试真题👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值