2024年Python最新MobileNetV3 实战:植物幼苗分类(pytorch),2024年最新京东技术面试

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

from dataset.dataset import SeedlingData

from torch.autograd import Variable

from torchvision.models import mobilenet_v3_large

from torchtoolbox.tools import mixup_data, mixup_criterion

from torchtoolbox.transform import Cutout

设置全局参数

=================================================================

设置学习率、BatchSize、epoch等参数,判断环境中是否存在GPU,如果没有则使用CPU。建议使用GPU,CPU太慢了。

设置全局参数

modellr = 1e-4

BATCH_SIZE = 16

EPOCHS = 300

DEVICE = torch.device(‘cuda’ if torch.cuda.is_available() else ‘cpu’)

图像预处理与增强

===================================================================

数据处理比较简单,加入了Cutout、做了Resize和归一化。

数据预处理

transform = transforms.Compose([

transforms.Resize((224, 224)),

Cutout(),

transforms.ToTensor(),

transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])

])

transform_test = transforms.Compose([

transforms.Resize((224, 224)),

transforms.ToTensor(),

transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])

])

读取数据

===============================================================

将数据集解压后放到data文件夹下面,如图:

image-20220201165147072

然后我们在dataset文件夹下面新建 init.py和dataset.py,在datasets.py文件夹写入下面的代码:

coding:utf8

import os

from PIL import Image

from torch.utils import data

from torchvision import transforms as T

from sklearn.model_selection import train_test_split

Labels = {‘Black-grass’: 0, ‘Charlock’: 1, ‘Cleavers’: 2, ‘Common Chickweed’: 3,

‘Common wheat’: 4, ‘Fat Hen’: 5, ‘Loose Silky-bent’: 6, ‘Maize’: 7, ‘Scentless Mayweed’: 8,

‘Shepherds Purse’: 9, ‘Small-flowered Cranesbill’: 10, ‘Sugar beet’: 11}

class SeedlingData (data.Dataset):

def init(self, root, transforms=None, train=True, test=False):

“”"

主要目标: 获取所有图片的地址,并根据训练,验证,测试划分数据

“”"

self.test = test

self.transforms = transforms

if self.test:

imgs = [os.path.join(root, img) for img in os.listdir(root)]

self.imgs = imgs

else:

imgs_labels = [os.path.join(root, img) for img in os.listdir(root)]

imgs = []

for imglable in imgs_labels:

for imgname in os.listdir(imglable):

imgpath = os.path.join(imglable, imgname)

imgs.append(imgpath)

trainval_files, val_files = train_test_split(imgs, test_size=0.3, random_state=42)

if train:

self.imgs = trainval_files

else:

self.imgs = val_files

def getitem(self, index):

“”"

一次返回一张图片的数据

“”"

img_path = self.imgs[index]

img_path=img_path.replace(“\”,‘/’)

if self.test:

label = -1

else:

labelname = img_path.split(‘/’)[-2]

label = Labels[labelname]

data = Image.open(img_path).convert(‘RGB’)

data = self.transforms(data)

return data, label

def len(self):

return len(self.imgs)

说一下代码的核心逻辑:

第一步 建立字典,定义类别对应的ID,用数字代替类别。

第二步 在__init__里面编写获取图片路径的方法。测试集只有一层路径直接读取,训练集在train文件夹下面是类别文件夹,先获取到类别,再获取到具体的图片路径。然后使用sklearn中切分数据集的方法,按照7:3的比例切分训练集和验证集。

第三步 在__getitem__方法中定义读取单个图片和类别的方法,由于图像中有位深度32位的,所以我在读取图像的时候做了转换。

然后我们在train.py调用SeedlingData读取数据 ,记着导入刚才写的dataset.py(from dataset.dataset import SeedlingData)

dataset_train = SeedlingData(‘data/train’, transforms=transform, train=True)

dataset_test = SeedlingData(“data/train”, transforms=transform_test, train=False)

读取数据

print(dataset_train.imgs)

导入数据

train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

设置模型

===============================================================

  • 设置loss函数为nn.CrossEntropyLoss()。

  • 设置模型为mobilenet_v3_large,预训练设置为true,num_classes设置为12。

  • 优化器设置为adam。

  • 学习率调整策略选择为余弦退火。

实例化模型并且移动到GPU

criterion = nn.CrossEntropyLoss()

model_ft = mobilenet_v3_large(pretrained=True)

print(model_ft)

num_ftrs = model_ft.classifier[3].in_features

model_ft.classifier[3] = nn.Linear(num_ftrs, 12)

model_ft.to(DEVICE)

print(model_ft)

选择简单暴力的Adam优化器,学习率调低

optimizer = optim.Adam(model_ft.parameters(), lr=modellr)

cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer,T_max=20,eta_min=1e-9)

定义训练和验证函数

====================================================================

定义训练过程

alpha=0.2

def train(model, device, train_loader, optimizer, epoch):

model.train()

sum_loss = 0

total_num = len(train_loader.dataset)

print(total_num, len(train_loader))

for batch_idx, (data, target) in enumerate(train_loader):

data, target = data.to(device, non_blocking=True), target.to(device, non_blocking=True)

data, labels_a, labels_b, lam = mixup_data(data, target, alpha)

optimizer.zero_grad()

output = model(data)

loss = mixup_criterion(criterion, output, labels_a, labels_b, lam)

loss.backward()

optimizer.step()

lr = optimizer.state_dict()[‘param_groups’][0][‘lr’]

print_loss = loss.data.item()

sum_loss += print_loss

if (batch_idx + 1) % 10 == 0:

print(‘Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR:{:.9f}’.format(

epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),

    • (batch_idx + 1) / len(train_loader), loss.item(),lr))

ave_loss = sum_loss / len(train_loader)

print(‘epoch:{},loss:{}’.format(epoch, ave_loss))

ACC=0

验证过程

def val(model, device, test_loader):

global ACC

model.eval()

test_loss = 0

correct = 0

total_num = len(test_loader.dataset)

print(total_num, len(test_loader))

with torch.no_grad():

for data, target in test_loader:

data, target = Variable(data).to(device), Variable(target).to(device)

output = model(data)

loss = criterion(output, target)

_, pred = torch.max(output.data, 1)

correct += torch.sum(pred == target)

print_loss = loss.data.item()

test_loss += print_loss

correct = correct.data.item()

acc = correct / total_num

avgloss = test_loss / len(test_loader)

print(‘\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n’.format(

avgloss, correct, len(test_loader.dataset), 100 * acc))

if acc > ACC:

torch.save(model_ft, ‘model_’ + str(epoch) + ‘_’ + str(round(acc, 3)) + ‘.pth’)

ACC = acc

训练

for epoch in range(1, EPOCHS + 1):

train(model_ft, DEVICE, train_loader, optimizer, epoch)

cosine_schedule.step()

val(model_ft, DEVICE, test_loader)

运行结果:

image-20220205214004566

测试

=============================================================

我介绍两种常用的测试方式,第一种是通用的,通过自己手动加载数据集然后做预测,具体操作如下:

测试集存放的目录如下图:

image-20220205214047841

第一步 定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!!

第二步 定义transforms,transforms和验证集的transforms一样即可,别做数据增强。

第三步 加载model,并将模型放在DEVICE里,

第四步 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。

import torch.utils.data.distributed

import torchvision.transforms as transforms

from PIL import Image

from torch.autograd import Variable

import os

classes = (‘Black-grass’, ‘Charlock’, ‘Cleavers’, ‘Common Chickweed’,

‘Common wheat’,‘Fat Hen’, ‘Loose Silky-bent’,

‘Maize’,‘Scentless Mayweed’,‘Shepherds Purse’,‘Small-flowered Cranesbill’,‘Sugar beet’)

transform_test = transforms.Compose([

transforms.Resize((224, 224)),

transforms.ToTensor(),

transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])

])

DEVICE = torch.device(“cuda:0” if torch.cuda.is_available() else “cpu”)

model = torch.load(“model.pth”)

model.eval()

model.to(DEVICE)

path=‘data/test/’

testList=os.listdir(path)

for file in testList:

img=Image.open(path+file)

img=transform_test(img)

img.unsqueeze_(0)

img = Variable(img).to(DEVICE)

out=model(img)

Predict

_, pred = torch.max(out.data, 1)

print(‘Image Name:{},predict:{}’.format(file,classes[pred.data.item()]))

(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
MobileNetV3是一种轻量级的神经网络架构,可以实现高效率的深度学习任务,尤其适合在移动端或边缘设备上应用。本文将介绍如何使用PyTorch实现并应用MobileNetV3模型来实现植物幼苗分类任务。 1. 数据集准备 首先,需要准备一个植物幼苗的数据集。可以在网上找到一些开源的植物幼苗数据集,或者自己从实际场景中采集数据。将数据集分为训练集和测试集,并将其导入PyTorch中,以便进行后续的训练和测试。 2. 构建模型 在PyTorch中,我们可以使用预先构建好的MobileNetV3模型,并对其进行微调,以适应我们的植物幼苗分类任务。可以使用torchvision中的models模块,导入MobileNetV3模型,然后替换掉模型的最后一层,以输出我们需要的分类结果。 3. 训练模型 使用数据集进行模型训练。将数据集分批喂给模型,进行训练,并验证模型的准确性。在训练过程中,可以设置一些超参数,如学习率、batch_size等,以优化模型的训练效果。 4. 测试模型 当模型训练完成后,将模型应用到测试集中,以验证模型的性能效果。我们可以使用混淆矩阵、ROC曲线等方法来评估模型的分类效果。 5. 模型优化 根据测试结果,对模型进行优化。可以改变模型结构、调整超参数、增加数据量等方法来优化模型训练效果,以提高模型的分类准确率。 总之,通过以上步骤,我们可以使用MobileNetV3模型来实现植物幼苗分类任务,并且可以通过不断地优化来提高模型的分类准确率。在实际应用中,我们可以将训练好的模型部署到移动设备或边缘设备中,以便实现实时的植物幼苗分类

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值