1.背景介绍
深度强化学习(Deep Reinforcement Learning, DRL) 是近年来在人工智能领域最热门的研究方向之一,它成功地将深度学习和强化学习的优点结合在一起,解决了一些以往难以解决的问题。然而,深度强化学习算法在实践中常常面临的一个挑战是样本效率的问题。
1.1 强化学习与深度学习的结合
强化学习是一种学习方式,智能体通过与环境的交互,学习到一个策略,使得累积奖励最大。深度学习则是一种机器学习方法,使用深度神经网络处理高维度、复杂的数据。将两者结合,我们可以让智能体在复杂的、高维度的环境中学习到优秀的策略。
1.2 样本效率问题
然而,深度强化学习的一个主要问题是样本效率低。也就是说,为了训练出一个好的策略,我们需要大量的与环境交互的经验,这导致训练过程需要消耗大量的时间和计算资源。
2.核心概念与联系
为了理解深度强化学习中的样本效率问题,我们需要理解一些核心概念。
2.1 策略
在强化学习中,智能体的行为模式被称为策略(policy)。策略是从状态到行动的映射,决定了智能体在给定环境状态下应该采取何种行动。
2.2 奖励
智能体在环境中采