1. 背景介绍
1.1 深度学习的寒冬
在 AlexNet 出现之前,深度学习领域经历了漫长的寒冬期。传统机器学习方法在图像识别等领域占据主导地位,而深度神经网络由于训练困难、计算资源限制等问题,发展缓慢。
1.2 ImageNet 挑战赛
ImageNet 大型视觉识别挑战赛(ILSVRC)的出现,为深度学习的发展提供了契机。该比赛要求参赛者设计算法,对包含 1000 个类别的数百万张图像进行分类,极大地推动了图像识别技术的发展。
2. 核心概念与联系
2.1 卷积神经网络(CNN)
AlexNet 是基于卷积神经网络(CNN)架构的深度学习模型。CNN 是一种专门用于处理图像数据的网络结构,其核心思想是利用卷积层提取图像的特征,并通过池化层降低特征维度,最终通过全连接层进行分类。
2.2 ReLU 激活函数
AlexNet 使用 ReLU(Rectified Linear Unit)作为激活函数,其表达式为 $f(x) = max(0, x)$。ReLU 解决了传统 sigmoid 和 tanh 激活函数的梯度消失问