层次聚类, 聚类算法, 距离度量, 凝聚式聚类, 分裂式聚类, dendrogram
1. 背景介绍
在数据挖掘和机器学习领域,聚类算法是无监督学习的重要组成部分,其目标是将数据点根据相似性划分为若干个互不相交的簇。层次聚类作为一种经典的聚类算法,通过构建层次结构来将数据点逐步聚合,最终形成一个包含所有数据点的树状结构,称为“dendrogram”。
层次聚类算法的优势在于其直观性强,易于理解和解释,并且能够处理不同形状和大小的簇。然而,它也存在一些缺点,例如计算复杂度较高,对噪声数据敏感,并且难以处理高维数据。
2. 核心概念与联系
层次聚类算法的核心概念包括:
- 距离度量: 用于衡量数据点之间的相似程度,常见的距离度量包括欧氏距离、曼哈顿距离、余弦相似度等。
- 聚类树(dendrogram): 层次聚类算法生成的树状结构,其中每个节点代表一个簇,叶子节点代表单个数据点。
- 凝聚式聚类: 从每个数据点作为一个单独的簇开始,逐步合并相似的簇,最终形成一个包含所有数据点的簇。
- 分裂式聚类: 从所有数据点作为一个整体簇开始,逐