无线 car play

近几年,无线car play已经被越来越多的用户所使用,支持的汽车品牌和型号也多起来了。大家体验了无线 car play 的方便。

有线 car play 和无线 car play 的区别,最直观的感受就是那根数据线了,无线car play不需要数据线连接,使用的是蓝牙和 Wi-Fi。那么无线 car play 的连接顺序是怎样的呢?看图1:

图 1 无线 car play 连接流程

大致的流程:

  1. iphone 和车机蓝牙连接(发现、设置、配对等过程);
  2. 车机发送 Wi-Fi 证书到 iphone;
  3. iphone 和车机的 Wi-Fi 连接完成后,完成 car play 会话的创建;
  4. 蓝牙断开。

看了上面的流程,大家应该会有一个大致的了解:无线 car play 依赖的是蓝牙和 Wi-Fi,而蓝牙会在car play会话创建(car play 可以正常地使用了)后断开。简单来说,蓝牙是做前期准备工作的,完成后就不需要蓝牙了。

如果你在使用无线 car play 的话,你可以观察一下,你在上车后, iphone 开启的蓝牙和Wi-Fi,当你的车机中控屏幕显示了 car play 界面后,你的蓝牙是不是断开的?即使没有断开,你手动关闭也不会影响你的 car play 使用。

那为什么要断开呢?原因是:避免干扰。

我们目前使用的无线 car play,大部分 Wi-Fi 只支持 2.4 GHz 频段,而蓝牙使用的也是2.4 GHz 频段,两者频率重叠的话,就会互相干扰。会出现连接速度慢、连接不上、信号弱、蓝牙音频跳跃等现象。而无线 car play,依赖的就是 Wi-Fi,如果有干扰,就可能导致数据传输慢,导致卡顿。或者连接速度慢、连接不上等现象。所以,苹果会要求 car play 在连接完成后断开蓝牙,为的就是避免干扰。

除了断开蓝牙,还有一个解决方案,就是使用支持 5GHz 频段的 Wi-Fi。

支持 5GHz 频段 Wi-Fi 的 car play,目前汽车的原车机支持的还是比较少的。市面上在卖的第三方 car play 模块或者转接盒子(有线car play 转 无线 car play)已经有部分支持了。建议大家在选购时选择这种支持 5GHz car play。

图 2 有线转无线car play转接盒

官方也提到,强烈建议使用支持 5GHz 频段的 Wi-Fi。

图 3 官方建议

在车上,我们自己也会使用一些无线设备,比如我们的 apple watch、行车记录仪、车载音响(DSP)设备等等。这些设备都需要使用蓝牙或者 Wi-Fi,那么也就存在干扰的可能,速度慢、连接不上、断断续续之类的情况也就会出现了。

如果你是使用的无线car play,遇到了类似的现象,可以排查是不是因为其他无线设备导致的干扰。除了无线 car play,我们在日常使用无线设备时,也会存在这种现象。

以下任一症状都可能是由 Wi-Fi 或蓝牙信号的干扰所导致的:

1.设备无法连接或无法保持连接状态;

2.连接速度较慢以及信号强度较弱;

3.蓝牙音频往前跳跃、时断时续、中断,或者有静电噪声或嗡嗡声;

4.指针移动不稳定或出现“跳跃”。

常见的微波炉、荧光灯、无线摄像机都属于干扰源,如果你在使用无线鼠标、无线触摸板、无线键盘,可能会出现卡顿、鼠标指针不稳定、乱跳等现象,可以尝试远离这些干扰源,或者离你的Wi-Fi路由器或者蓝牙设备近一些,还有就是尽可能使用 5GHz 频段。

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeek与Mermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeek与Mermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社区资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值