论文链接:Gradient-based learning applied to document recognition
一. 网络结构介绍
LetNet-5是在1998年提出的一个比较简单的神经网络,但是其包含深度学习的基本模块:卷积层、池化层以及全连接层,其结构如图1所示。
图1:LeNet-5网络结构图
1. 网络各层参数解析:
1.1 INPUT层:
首先是数据输入层,输入图像尺寸统一是归一化后的32x32。
1.2 C1:卷积层
输入:32x32
卷积核:5x5
卷积核个数:6
输出:公式“(W − F + 2P )/S+1” ->(32-5+0)/1+1=28,即得到的输出为28x28
注释:W为输入大小,F为卷积核大小,S为步长
1.3 S2:池化层
输入:28x28
卷积核:2x2
输出:"(W-F)/S+1"->(28-2)/2+1=14
1.4 C3:卷积层
输入:14x14
卷积核:5x5
卷积核个数:16
输出:“(W-F+2F)/S+1”->(14-5+0)/1+1=10,即得到的输出为10x10
1.5 S4:池化层
输入:10x10