一招教你解决DeepSeek卡顿,告别服务器繁忙


前言

最近大家使用 DeepSeek 时,是不是总被 “服务器繁忙,请稍后再试” 这句话困扰?

首当其冲的就是 DeepSeek 的火爆。其出色表现吸引了海量用户,用户请求如潮水般涌来,服务器不堪重负。尤其在新功能上线或热门时段,服务器更是被大量请求 “淹没” 。黑客发起 DDoS 攻击,向服务器发送海量无效请求,占用服务器资源,导致正常用户的请求得不到及时处理。

如此卡顿已经影响了我们的正常使用,有很多用户会选择本地部署,即把模型下载到电脑里。但本地部署耗时长,且对电脑的性能也有要求。还有别的方法可以解决吗?当然有!只要你耐心看完这篇教程,轻松白嫖DeepSeek满血版!


`

一、注册硅基流动账号

我们可以通过 硅基流动 使用DeepSeek R1模型
硅基流动目前已经接入 了DeepSeek 模型。用户无需自建服务,即可轻松调用高性能的 DeepSeek 模型 API,大大降低使用门槛。现在注册还能免费获得2千万的Tokens!下方链接即为官网地址,点击链接即可注册使用!

在这里插入图片描述

官网地址:https://cloud.siliconflow.cn/i/QP6TY2JB

二、使用方式

1.在线使用

我们注册进来即可看到这个页面,可以看到很多ai模型,第一个就是DeepSeek-R1模型满血版,我们点击它。

在这里插入图片描述

接着我们点击“在线体验”。

在这里插入图片描述

进来后我们就可以与模型对话了!注意Models选择DeepSeek R1。

在这里插入图片描述

2.电脑客户端使用

客户端使用即在我们的电脑上安装软件,无需查找网页,随时随地打开软件即可使用,非常方便。

1.点击硅基流动官网左侧的“API密钥”,然后点击右侧的“新建API密钥”。

在这里插入图片描述

2.根据自己的用途输入描述,然后点击“新建密钥”。

在这里插入图片描述

3.点击我们刚刚新建好的密钥复制下来。

在这里插入图片描述

4.下载AI桌面客户端,这里我推荐ChatBox。

官方下载地址:https://chatboxai.app/zh

网盘下载:https://pan.quark.cn/s/bc6cc961b801

根据自己的电脑系统选择安装~
在这里插入图片描述

5.下载好之后我们打开软件,点击左下角的设置。

在这里插入图片描述

6.模型提供方我们选择“SiliconFlow API”
在这里插入图片描述

7.复制我们刚刚在硅基流动生成的API密钥,在此处粘贴,模型这儿我们通过下拉菜单选择“DeepSeek-R1”,最后点击保存。
在这里插入图片描述

此时我们可以通过对话框与AI模型交互了

2.移动客户端使用

电脑端我们可以在办公时使用,那我们在日常生活中如果在手机上下载ChatBox,使用模型会更加便捷!移动端的下载地址和电脑端一样!访问官方网站或各大应用商店即可下载!

官网地址:https://chatboxai.app/zh

使用方法也和电脑端一样,大家可以根据上面电脑端的操作方法在手机上也操作一遍,最终效果是一致的。

整个操作流程还是比较简单的,跟着教程走不会花费很多时间!一劳永逸!

四、获取DeepSeek整合包

这里免费提供了DeepSeek模型整合包以及指导手册还有AI人工智能课程,帮助大家从入门到精通,从小白到大神!资料收集不易,求个免费的赞及收藏!感谢!

链接 :https://pan.quark.cn/s/f78f3cd405f0
在这里插入图片描述

### 解决 DeepSeek 程序运行时出现的卡顿问题 当遇到 DeepSeek 程序运行过程中出现卡顿的情况,可以从以下几个方面着手排查并解决问题: #### 1. 资源监控与优化 确保计算机有足够的资源来支持 DeepSeek 的运行。可以通过任务管理器或其他系统监视工具查看 CPU、内存和磁盘 I/O 使用情况。如果发现某个资源接近饱和,则可能需要升级硬件配置或调整应用程序设置以减少资源占用。 对于 GPU 加速的应用场景,特别是像 DeepSeek 这样的 AI 工具,建议安装最新的 NVIDIA 驱动程序,并确认 CUDA 和 cuDNN 版本兼容性良好[^2]。 #### 2. 更新软件版本 保持 DeepSeek 及其依赖库处于最新状态非常重要。开发者会不断修复已知漏洞以及性能瓶颈,因此定期检查官方发布的更新通知,并按照说明完成相应操作可以有效改善用户体验。 访问官方网站获取最权威的信息和技术文档是非常必要的,比如通过提供的链接地址 https://build.nvidia.com/deepseek-ai/deepseek-r1 来了解是否有新的补丁发布。 #### 3. 参数调优 根据实际应用场景灵活调整参数也是缓解卡顿的有效手段之一。例如,在初始化 DeepSeek 实例时适当降低 batch size 或者缩短 max sequence length ,这有助于减轻计算负担从而提高响应速度。 另外还可以探索其他高级选项如混合精度训练 (Mixed Precision Training),它能够在几乎不影响准确性的情况下显著加快推理过程[^4]。 ```python from transformers import AutoModelForSequenceClassification, Trainer model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased') training_args = { "per_device_train_batch_size": 8, "max_seq_length": 64, } trainer = Trainer( model=model, args=training_args, ) # 开启混合精度模式 trainer.train(fp16=True) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值