公安大数据平台建设项目

第一部分:软硬件集成服务

一、整体建设内容:

本项目按照公安部统一部署,根据XX省公安厅大数据智能化建设总体方案,新建YY公安大数据平台,主要包括新一代公安信息网建设、网络安全建设、云计算平台建设、大数据平台建设、构建统一运维运营服务体系。项目主要建设内容为:

(1)新一代公安信息网建设:

根据《信息安全技术网络安全等级保护基本要求》(GB/T 22239-2019)标准的第三级安全保护能力要求以及公安部相关建设标准,构建数据汇聚节点、用户汇聚节点,实现用户接入网改造、汇聚层改造,形成一个高性能、高可靠、可扩展的网络平台,满足公安大数据对网络的大带宽、低延时、高可靠需求和公安日常办公需求,支持与其他网络的高效数据交换和联通共享。

购置用户汇聚节点路由器、数据汇聚节点路由器、三级网汇聚交换机等设备,共计24台(套)。

(2)网络安全建设:

根据《信息安全技术网络安全等级保护基本要求》(GB/T 22239-2019)标准的第三级安全保护能力要求以及公安部相关建设标准,构建符合公安大数据安全总体技术框架,基于“零信任”的云平台安全、网络安全、数据安全、访问安全、应用安全、终端安全和提供统一安全基础服务的纵深安全防御体系。

购置零信任认证服务、用户汇聚节点边界防火墙、数据汇聚节点边界防火墙、数据中心云桌面、安全管理中心等设备,共计67台(套)。

(3)云计算平台建设:

云计算平台主要按照公安部大数据智能化建设要求,构建统一的YY市公安云计算平台,面向全警提供标准的涵盖 IAAS 和 PaaS 层的云计算服务,建设云支撑架构和组件开发,提升 IaaS 层和 PaaS层支撑能力,同时需基于公安部下发的《公安云计算框架指南》与《公安大数据规范性文件汇编 第一部分:公安云计算平台》要求,构建分层解耦、异构兼容的技术体系,打造具备YY特色、开放共享的云平台生态。同时完成云计算平台安全、运维运营等内容的建设,以及与现有平台融合和对现有系统上云。

根据《信息安全技术网络安全等级保护基本要求》(GB/T 22239-2019)标准的第三级安全保护能力要求,以及《GA DSJ 300-2019 公安大数据安全 总体技术框架》相关标准规范的要求进行整体云平台安全规划设计,保证云平台内的计算、存储、网络资源可以稳定、安全、可靠的对外提供服务,满足“安全、可信、合规”的要求。依据公安大数据安全标准规范要求,构建立体化纵深防御安全体系,通过云安全的开放架构,与云、网络协同联动,形成云网安一体化安全体系,保护云计算平台的安全。

建设基础设施服务层(IaaS层)和平台服务层(PaaS层),购置云平台管理服务器、可视化处理服务器、管理节点服务器、云平台分布式块存储、业务核心交换机、东西向流量防火墙、大数据软件、API网关服务软件等设备及软件,共计534台(套)。

(4)大数据平台建设:

大数据平台主要按照公安部大数据智能化建设要求,构建统一的YY市公安大数据平台,面向全局各警种单位及全体民警提供大数据服务,支撑警务实战。项目平台规划建设完全按照《公安大数据平台建设演进指南》和《公安大数据规范性文件汇编 第二部分:公安大数据处理》进行,建成的项目平台能够实现对全局乃至全市的数据资源进行汇聚、治理和服务。

建设数据服务层(DaaS层)和业务应用层(SaaS层),数据服务层开发数据接入、数据处理、数据治理、数据组织、数据服务、数据运营等;业务应用层开发大数据基础业务应用、禁毒专题应用系统、情指行一体化智能指挥调度平台、地理信息基础平台、生物识别服务等。

构建全方位获取、全网络汇聚、全维度整合、全流程处理、全天候服务、全警种应用的动态大数据资源服务体系,以及灵敏感知、主动发现、精准推送、动态在线的大数据智能应用体系。

(5)其他配套设施:

购置移动警务终端2167台提供移动警务服务实现公安大数据的移动应用;购置备份一体机1台实现公安大数据核心数据备份服务;租用机柜数量不少于50个的专业IDC机房及提供至少22条裸光纤资源,并配合其他运营商连通裸光纤链路等。

二、建设原则和策略:

(1)坚持统筹规划、统一标准的原则:

全省各级公安机关、各警种信息化建设应用的各个方面、各个层次进行全省统筹规划,统一标准、统一规范、统一要求、统一资源、统筹建设,强化业务系统关联、数据共享、功能融合,建立健全全省公安大数据中心的技术标准体系和准入机制,打造全警全域大数据中心,XX省按照公安部的统一部署,结合省实际情况制定了《XX省公安大数据智能化规划设计方案V2.0》,明确提出“如YY、大连须规划独立建设市级公安大数据平台。”到2021年底前基本建成集强大计算能力、海量数据资源、高度信息共享、深度智能应用、严密安全保障、高效警务运行于一体的大数据智能化应用新生态,我市按照部及省级规划建设,打造YY“数据警务”品牌。

(2)坚持突出重点、分步实施的原则:

围绕大数据智能化建设目标,整个大数据中心的规划将考虑未来数年的建设目标,在统筹规划的基础上分步实施,逐步见效,主体先行,应用引领,统分结合,融合信通,网安数据,形成规模效益。

大数据项目建设周期比较长,建设成本高,是一项重要战略投资,整个建设目标分解成长期、中期、短期建设目标,确保项目建设可控。

(3)坚持按需共享、授权使用的原则:

以数据资源共享服务为基础,进行深入的数据分析挖掘,面向应用需求提供数据资源服务,兼顾先进性与安全性,并根据《公安信息共享管理规定》授权使用。

(4)坚持服务实战、应用创新的原则:

采用统一技术标准,创新数据应用设计,突出多元化应用需求,深化数据分析和挖掘,探索人工智能和机器学习在公安领域的深度应用,通过大数据应用带动YY公安的警务创新工作。

以技术应用、服务模式、体制机制创新为重点,改革完善信息化建设、大数据应用、基层基础工作模式,增强民警体验,激发基层活力,确保设备用上去、人力减下来、效率提上去、负担降下来。

(5)坚持技术先进、自主可控的原则:

规划设计坚持技术先进、自主可控的原则。为了更好的支撑大数据智能化建设与业务发展,在考虑总体架构规划时必须兼顾先进性、成熟性、实用性,把握好平衡。一方面利用云计算大数据人工智能等业界先进的技术来解决目前的关键问题,另一方面也要保证使用的技术方案成熟可靠、好用易用。

大数据建设应用与安全保密同步发展,严格落实国家有关政策规定,确保大数据安全。为保障关键时刻不被“掐脖子”,底层硬件服务器需要强化国产化自主技术的使用,避免国外关键技术的控制,公安大数据平台的关键技术框架应支持运行在基于国产化芯片的标准服务器之上,实现“全面安全、自主可控”。

三、项目建设性能要求:

所提供的标的包括设备的购置、安装、集成等服务,且满足以上背景及要求。

(1)查询性能需求:

平台支持每秒50个以上用户的查询请求返回结果,查询会按用户提交请求顺序进行排队延时处理;

支持多语种查询,至少支持中文(简繁体)、英文、越南语、老挝语、缅甸语、泰国语、维文和藏文等语种;

支持内容数据查询快速返回,4秒内向用户展示查询结果;

支持多种检索方式,关键字检索、组合检索、附件检索和日期范围内检索等;

查询结果支持多种排序方式。

(2)分析性能需求:

基于大数据存储分析集群设备,从原始结构化数据中,提取各类资源库数据,定时提取、关联、合并、去重等操作,支持亿级规模原始结构化数据在4个小时内完成单维度、多维度的虚拟身份关系分析操作。

(3)系统响应需求:

界面所有页面的响应时间在3s以内;

查询功能在10秒内返回结果;

实时接入的数据10分钟内可查询;

100个并发精确查询条件下平均响应时间不超过10秒。

(4)系统并发需求:

系统界面支持1000用户并发访问;

查询业务支持100个请求并发访问并在10s内返回结果。超出并发数量,系统会按用户提交请求顺序进行排队延时处理,保证请求正常下发和返回。

四、整体架构设计要求:

(1)基础设施层服务(IaaS):构建市局“新一代公安信息网”。根据现有情况,结合实际业务的发展需求构建新一代公安信息网。将大力促进公安信息化系统的建设,高效承载各类业务,支撑YY市公安大数据智能化建设应用。满足公安大数据对网络的大带宽、低延时、高可靠的需求和公安民警日常办公的需求,支持与其他网络的高效数据交换和联通共享。充分构建一个高性能、高可靠、可扩展的网络平台;网络安全建设:构建符合“公安大数据安全总体技术框架技术设计要求”,基于“零信任”理念的云平台安全、网络安全、数据安全、访问安全、应用安全、终端安全和提供统一安全基础服务的纵深安全防御体系。包括安全基础资源、安全防护体系、零信任体系、安全服务平台、边界安全、网络安全、云平台安全、数据安全、应用安全、终端安全、安全管理中心等安全能力的建设。计算平台建设:构建以“一切资源化,资源目录化,目录全局化,全局标准化”为准则,构建以统一调度的计算能力体系、全网融合的数据资源体系、安全共享的资源服务体系为一体的公安云计算平台。面向全警提供统一的基础资源服务。

(2)平台服务层(PaaS):平台服务层分为平台支撑服务和数据支撑服务两个子层,平台支撑服务提供传输交换、服务总线、任务调度、认证服务、开发服务、加密/解密、地理位置等服务,数据支撑服务提供关系型数据库、内存数据库、分布式并行文件系统、实时计算、内存计算等服务。

(3)数据服务层(DaaS):公安大数据平台主要包括数据接入、数据处理、数据治理、数据组织、数据服务、智能应用支撑。

(4)业务应用层(SaaS):构建全方位获取、全网络汇聚、全维度整合、全流程处理、全天候服务、全警种应用的动态的大数据资源服务体系。构建灵敏感知、主动发现、精准推送、动态在线大数据智能应用体系。充分运用人工智能新技术突破人力极限,在数据挖掘、特征提取、算法优化、模型构建、知识总结和规律发现等方面实现新突破,促进大数据在公安工作全领域、全方位、全过程的深度智能应用。

(5)大数据标准体系建设:构建公安大数运维管理标准体系及运营标准体系。实现对基础设施、网络、平台、数据、应用、安全各环节稳定运行的统一运维管理,和各类资源的统一运营服务。

(6)纵深安全防御体系建设:构建YY市公安大数据纵深安全防御体系建设,以网络安全区域设计为基础,重点建设数据中心间网络安全、数据中心内网络安全两部分,实现用户接入网络安全、数据中心网络安全和运维管理网络安全能力。

以上建设内容需满足《密码法》《国家网络安全法》等相关要求,符合《信息安全技术网络安全等级保护基本要求》(GB/T 22239-2019)标准的第三级安全保护能力要求以及公安部相关建设标准。

五、具体建设需求:

本次采购的软件部分应满足公安部、XX省公安厅相关文件以及最新技术标准要求,并根据采购人的实际业务需求定制开发,包括但不限于以下服务内容。

(一)新一代公安信息网建设需求

本次YY市局“新一代公安信息网”建设,要求网络提供低时延、高可靠、高效率的服务,我市接入网分别由数据汇聚节点、用户汇聚节点、本地接入网络设备和链路组成。数据汇聚节点和用户汇聚节点作为接入网核心起着承上启下的作用,YY市局公安信息网作为新一代公安信息网用户接入网,上联新建用户汇聚节点;新建大数据平台上联数据汇聚节点。用户汇聚节点和数据汇聚节点通过市级节点访问省级节点,实现省市数据的互联互通。本次建设内容共包括用户汇聚节点、数据汇聚节点和三级网汇聚交换机,用户接入网网络设备利旧。

建设内容具体包括以下几点:

(1)构建数据汇聚节点;

(2)构建用户汇聚节点;

(3)各警种用户统一迁移至用户接入网;

(4)原公安数据中心业务系统改造迁移至数据接入网;

数据汇聚节点与用户汇聚节点之间,部署实现用户访问数据中心的统一安全控制。

数据汇聚节点均部署两台高性能路由器,满足网络可靠性和扩展性要求。我市数据汇聚节点以双链路口字型连接同级骨干网络节点,与同级大数据平台采用双链路口字型互联,与同级安全访问采用交叉互联。

用户汇聚节点:我市用户汇聚节点均部署两台高性能路由器,满足网络可靠性和扩展性要求。我市用户汇聚节点以双链路口字型连接同级骨干网络节点,与同级核心交换机采用双链路口字型互联,与同级安全访问采用交叉互联。

用户接入:我市用户汇聚节点接入用户包括市局、县区局、基层所队用户。县区局采用双链路口字型上连市局核心交换机,基层所队采用单链路上连县区局核心交换机。

用户与数据互联:在我市数据汇聚节点和用户汇聚节点之间分别部署安全访问与数据交换,实现数据汇聚节点与用户汇聚节点的安全互联,实现外部网络的安全接入。

数据汇聚节点和用户汇聚节点与安全访问之间均采用双设备交叉连接,满足网络可靠性和扩展性要求。

(二)网络安全建设需求

YY市公安局新一代公安信息网大数据安全建设内容包括零信任体系建设(认证服务、权限管理服务、环境感知服务、审计服务、审批服务)、安全访问与数据交换、安全管理中心建设(资产管理、态势感知管理、业务安全策略控制服务)。最终满足公安部、XX省公安厅相关文件以及最新技术标准要求。

1、建设目标:

根据《信息安全技术网络安全等级保护基本要求》(GB/T 22239-2019)标准的第三级安全保护能力要求以及公安部相关建设标准,构建符合公安大数据安全总体技术框架,基于“零信任”的云平台安全、网络安全、数据安全、访问安全、应用安全、终端安全和提供统一安全基础服务的纵深安全防御体系。

2、建设内容:

购置零信任认证服务、用户汇聚节点边界防火墙、数据汇聚节点边界防火墙、数据中心云桌面、安全管理中心等设备及软件。

3、软件清单:

2.1零信任认证服务:

1.支持多业务系统单点登录功能,登录门户后访问其它业务系统时无需进行二次认证;

2.支持单点登录(B/S、云应用等);

3.提供门户功能,实现应用系统列表、常用应用系统列表;支持定制化登录页面,登录页面需按照系统整体风格设计;

4.支持口令、证书认证等多种认证方式,能够提供组合认证服务、多因子级别管理服务;

5.支持身份认证支撑服务,实现统一的并且可配置化的认证接入管理;

6.能够针对不同的业务系统配置不同级别的认证策略,根据不同的用户配置不同级别的认证策略,根据其他条件配置不同级别的认证策略;

7.支持多次认证错误后锁定统一用户。实现令牌、会话的全生命周期管理,支持对令牌的生成、更新、查询等功能;

8.支持机构属性自定义扩展,机构以树型显示,层次清晰;支持选择机构树上节点后进行添加机构可自动带回所选上级机构;支持机构信息内外同步;支持按机构进行管理权限分配;

9.实现面向第三方系统提供数据同步与支撑服务,支持通过身份信息监控以及周期性数据同步手段,提供标准同步接口;对外同步支持对中同步类型,数据库、ldap、webservice;对外同步支持全量同步、增量同步、实时同步;对外同步支持多种过滤条件;对内同步支持对内数据库、LDAP;

10. 支持与可信接入检控联动,接收可信接入检控的令牌验证请求,对令牌进行合法性校验。支持与可信应用/数据检控联动,接收可信应用/数据检控的令牌验证请求,对令牌进行合法性校验;

11.支持向权限管理服务发送令牌和状态更新;支持向权限管理服务提供用户信息和机构信息查询服务;支持从权限管理服务获取用户有权访问的应用列表;支持接收权限管理服务发送的权限变更通知;

12.支持向应用提供认证服务;支持向应用发送用户令牌和应用令牌;支持向应用提供用户信息和组织机构信息查询服务;

13.系统需至少支持20000人在线认证能力,提供三年原厂维保。

2.2零信任权限管理服务:

1、支持授权主体、授权客户的同步机制,其中包含用户、机构、场景(信任评分、网络通道、请求设备)、应用等信息的同步与初始化功能。

1)支持从第三方系统同步用户信息。    

2)支持通过第三方同步机构信息。

3)支持对场景信息的初始化与维护功能。

4)支持从第三方系统同步授权客体信息,包含应用资源、高敏感资源。

5)支持全量同步和增量同步。

2、实现对角色信息进行管理,包含角色信息的全生命周期维护,以及角色与授权客体的绑定关系:

1)支持角色属性维护,包含公共角色、本地角色。

2)支持以多种维度进行角色与资源绑定,包含资源维度、角色维度。绑定资源内容包含应用资源、高敏感资源。

3、实现对授权主体、角色、授权客体建立绑定关系,支持授权有效期管理:

1)支持引导式操作步骤授权,第一步选择用户、第二步选择角色、第三步确认。

2)支持对机构、用户、场景主体授权。

3) 支持按姓名和身份证号精准查询用户进行用户选择。

4) 支持按用户属性模糊查询用户进行用户选择。

5)支持批量导入式的用户选择。

6)支持同时对主体的权限进行授权和撤销操作。

7)支持按角色属性进行授权或撤销。

8)支持多权限授权时统一或分别设置权限有效期。

9)支持在线用户权限变更时对外发送权限变更通知接口。

10)支持权限查询追踪授权轨迹和历史授权镜像。

4、实现对权限信息的查询与查看。

1)支持对权限的全生命周期监测,包括权限的授权、鉴权、权限撤销。

2)支持精准查询与高级查询两种模式。

5、 实现对第三方提供多种类型鉴权服务,实现令牌的解析与安全校验。

1)支持应用级鉴权能力,提供用户、机构、场景具备的全部应用资源权限。

2)支持高敏感资源鉴权,提供用户、机构、场景在指定应用下具备的高敏感资源权限。

3)支持鉴权时进行令牌合规性校验。

4)支持鉴权服务在4000并发量情况下平均响应时间不超过0.8s,在6000并发量的情况下平均响应时间不超过1s;服务运行有效工作时间≥99%。服务运行时峰值CPU所占用≤60%,内存所占用≤80%。

6、 实现对鉴权行为进行记录、管理与监控。

1)支持记录用户的每次鉴权行为。

2)支持以应用、角色、资源、用户等多个维度展现所有鉴权行为。

7、支持对用户域与数据域提供权限访问控制的策略通知与鉴权能力。

1)支持向用户域提供入门级鉴权、高敏感鉴权、应用级鉴权能力;

2)支持向数据域提供应用级鉴权、功能级鉴权、服务级鉴权及数据级鉴权能力;

3)支持实时提供应用资源变更后的权限策略通知能力;

4)支持从认证服务接收用户信息、机构信息;

5)接收认证服务提供的用户令牌与应用令牌;

6)提供三年原厂维保,及安装调测服务。

2.3零信任环境感知服务:

1、环境感知服务负责对终端身份进行不可仿冒标识,对终端环境进行感知和度量,并传递给安全策略控制,协助安全策略控制完成终端的安全环境核查,从而实现动态访问控制的目的;

2、环境感知服务对所有感知项进行三种等级划分:潜在风险、一般故障、严重风险,可以分别对这三种等级划分进行权值的定义,权值范围为:0-100;

3、具有与终端、应用联动的能力;

4、环境感知服务包括终端标识管理、环境感知内容管理、感知策略管理、环境感知报告、云桌面联动感知管理等功能,提供三年原厂维保。

2.4审批服务:

1、支持展示登录人相关已起草申请、待办理及已审批的最近10条审批流程;

2、支持通过认证服务同步缓存机构信息及用户信息;

3、支持通过机构名称、机构编码、用户姓名及身份证号等条件进行检索操作;

4、支持查询登录人相关的所有审批流程,可通过审批类型等条件进行查询操作,如任务审批、权限审批等;

5、查询流程范围支持分级策略,如管理员可以看到全部所管辖机构内的相关流程;

6、支持为不同类型的审批流程进行流程定制;

7、支持系统内部流转权限审批流程,可自定义配置流程节点和审批单人员,流程配置支持WEB页面拖拽画流程;

8、支持通过白名单策略匹配多套不同审批流程;

9、支持根据不同业务系统定制审批页面所展示的信息项,包含应用令牌、审批请求类型、审批标题、审批内容、提请人员OpenID、提请人员姓名、提请人单位ID、申请人单位名称、创建时间等;

10、支持对超期任务的提醒配置功能,其中提醒方式支持:短信提醒、邮件提醒;

11、支持对流程紧急回退上一节点操作;

12、支持对流程设置审批的有效期限,支持对已经超期流程的查询与导出功能;

13、支持对提交人与审批人重复风险、一次审批中单人连续审批风险、审批内容命中红/白名单风险等风险类型记录留痕,其中风险日志信息包括但不限于:日志发送方、日志接收方、风险类型、风险内容、风险发生时间等信息;

14、支持通过风险类型、风险发生时间段对风险行为日志进行多条件查询;

15、支持将风险日志信息及审批日志推送至审计服务;

16、支持接收权限服务策略变更通知,支持向权限服务提供权限申请与变更服务,支持将审批结果发送至权限管理服务;

17、提供三年原厂维保,及安装调测服务。

2.5审计服务:

1、系统提供可灵活部署和具备自保护能力的日志采集器。日志采集器完成日志采集后,统一将日志发送至安全审计中心,实现集中化日志审计。采集范围包括:身份系统、认证系统、权限系统、审批系统等应用系统。支持UDP、HTTP、JDBC等方式进行日志采集;

2、通过专用采集设备针对网络流量进行采集;

3、支持根据条件进行日志过滤,系统可以对采集到的日志进行基于规则的过滤处理,去掉无意义的日志,消除日志噪声;

4、能够将非标准的日志内容转化成为标准日志。系统自动对所有采集到的日志进行标准化处理;

5、系统可以针对采集到的日志进行集成处理,建立日志间的关联关系,提升日志价值。达到将用户的各种行为进行集成,形成用户行为轨迹的目的;

6、基于应用系统日志进行认证、应用和授权维度的分析,并以可视化和二维表的方式进行展示。支持认证统计分析功能,能够直观展示业务系统的认证频次、认证时间段等信息。支持应用统计分析功能,能够直观展示各个应用的访问量、应用24小时访问热力图、应用访问量进行排名。支持权限统计分析功能,能够直观的反映出各个应用的授权信息和鉴权信息;

7、支持用户基于身份标识、事件时间、事件动作、源地址、目的地址等条件进行组合查询,并可导出查询结果。能够自动根据选择时间展示各个时间段的日志量;

8、支持基于业务日志的行为发生的主体、行为发生的IP、行为发生时间范围、行为发生时间周期、行为结果等进行数据分析并构建分析模型。能够显示当前基于这个配置产生的效果,方便调整模型;

9、支持进行频繁命中红/白名单分析;策略执行点业务日志一致性分析;支持系统使用频度异常分析;属地使用异常分析;采用基于自定义模型的数据比对方法进行异常行为分析;基于调用链路分析的风险排查对异常行为进行分析;

10、支持告警规则设置,根据模板配置告警规则。设置规则包括基本信息、告警条件、告警分类、告警级别、告警标签和处理建议。预警类型包括但不限于业务关键操作、敏感数据操作、频繁命中白名单等;

11支持通过身份标识、事件时间、告警类型、告警级别、等条件进行告警查询,并能够进行告警溯源;

12、提供数据的自动或手动备份及快照功能,当需要时可手动恢复;

13、对审计记录进行保护,能够定期备份,避免数据受到未预期的删除、修改或覆盖;

14、记录监控审计系统管理员的所有操作行为。可根据管理员基本信息、操作类型、操作内容、操作时间,操作结果等条件进行查询;

15、系统具有丰富的自身配置管理功能,包括自身安全配置、自保护配置、系统运行参数配置、审计资源配置等。

16、提供三年原厂维保,及安装调测服务。

2.6数据中心云桌面:

1、提供云化虚拟桌面系统,访问高敏业务,满足数据不落地要求,配置600用户并发,支持闲时用户下线。

2、确保关键用户业务的连续性和体验感,提供办公桌面。对办公桌面提供CPU、内存等资源保障;

3、通过服务器节点构建,同一集群内部实现计算存储融合,可配置3副本,满足桌面云业务可靠性场景要求。

4、提供三年原厂维保,及安装调测服务。

2.7用户接入区零信任服务代理:

1、部署在用户接入区,提供用户、设备、应用等不同实体认证状态检查和接入认证功能;

2、认证服务代理通过对接零信任体系认证服务进行身份认证,认证完成后向用户返回用户令牌、应用令牌等信息;

3、认证服务器代理提供通讯加密功能,保证代理服务和认证服务之间信息交互的保密性。

4、提供三年原厂维保。

2.8用户接入区零信任服务代理服务:

1、认证服务代理:

(1)部署在用户接入区,提供用户、设备、应用等不同实体认证状态检查和接入认证功能;

(2)认证服务代理通过对接零信任体系认证服务进行身份认证,认证完成后向用户返回用户令牌、应用令牌等信息;

(3)认证服务器代理提供通讯加密功能,保证代理服务和认证服务之间信息交互的保密性。

2、权限服务代理:

(1)部署在用户接入区,支持通过代理模式跨网跨域访问权限管理服务,为用户接入区提供鉴权服务;

(2)权限管理服务代理支持与权限管理服务加密通讯,支持国密算法通信;

(3)支持接收与转发用户发起的鉴权请求,并完成鉴权流程。支持将鉴权结果返回用户请求端。

3、用户接入区环境感知代理:

(1)环境感知代理通过终端Agent采集用户终端设备属性、可信环境信息,传递给零信任体系的环境感知服务,实现对终端可信环境的状态和变化的实时感知;

(2)支持通过“可信加权”原则,对风险权值进行相加,根据不同权值或安全等级指定安全策略并下发控制服务;

(3)提供终端License授权≥20000,提供三年原厂维保,及安装调测服务。

2.9安全管理中心:

资产态势:

1)支持基于资产信息,按照区域、类型、重要程度等,结合安全事件、漏洞信息进行多维度分析;

2)支持形成资产类型分布、资产脆弱性、资产健康度、资产风险分布等分析数据,进行态势展示。

脆弱性态势:

1) 支持 基于漏洞和基线核查信息,结合组织信息、应用系统、区域、资产等基础数据,进行多维度分析;

2)支持形成在不同区域、组织、系统和资产上的脆弱性分布以及排名等分析数据,进行态势展示。

威胁态势:

1)支持基于网络攻击、恶意代码、威胁情报等数据进行多维度分析;

2)支持形成横向威胁扩散、病毒蔓延趋势、攻击路径等分析数据,进行态势展示。

安全事件态势:

1)支持按照安全事件时间段,对事件攻击链分布、事件级别、事件类型、区域分布等对公安信息网中发生的安全事件进行多维度分析;

2)支持形成安全事件的不同区域、不同时段事件分布对比、安全事件发展趋势等分析数据,进行态势展示。

安全风险评估:

1)支持对信息系统进行风险评估,基于信息系统的资产脆弱性、安全威胁进行安全风险计算,分析信息系统安全事件发生的可能性和危害程度;

2)支持以信息系统、资产为核心进行风险分析,包括风险分布情况、风险变化趋势、风险处置情况,并提出风险缓解措施或建议;

资产数据管理:

1) 提供资产数据管理能力,包括资产数据的增加、删除、变更、查询、导入、导出;

2) 提供资产标签管理能力,包括但不限于资产标签的增加、删除、变更、查询。

资产管理发现:

1) 提供通过主动、被动方式识别未知资产;

2) 提供资产类型、厂商、系统、版本等信息管理。

资产画像管理:

1) 提供资产画像能力,支持基于资产属性、行为及通信关系信息构建资产全貌;

2) 提供资产聚类分析能力,支持按照资产属性数据组合进行自动化分析,包括但不限于软件、硬件、外设及其细分类型;

3) 提供资产画像信息归档能力,支持自动化归档,支持导入、导出。

业务安全策略控制服务:

1、风险汇聚:

a)应支持与环境感知服务联动,接收环境感知服务信息;

b) 应支持与认证服务联动,接收令牌和风险信息;

c) 应支持与权限服务联动,接收风险信息;

d) 应支持与审计服务联动,接收风险、预警信息;

e) 应支持与安全防护策略控制服务联动,接收风险信息。

2、信任评估:

a) 应支持将汇聚的认证、审批、权限、应用、服务等多维日志、风险信息进行关联分析;

b) 应支持基于信任评估模型进行综合评估;

c) 应支持基于安全策略和评估结果,生成控制指令。

3、 控制指令下发

a) 应具备为认证服务、权限服务、应用、服务等下发用户、应用令牌撤销指令的能力;

b) 指令下发应支持校验机制,避免指令伪造;

c) 支持下发失败重传机制,避免指令丢失。

4、与认证服务联动

a) 接收来自认证服务的风险信息;

b) 支持向认证服务发送控制指令;

c) 支持认证服务的硬件特征、硬件环境类型和终端风险信息查询。

5、与环境感知服务联动

a) 能够从环境感知服务进行环境信息同步;

b) 接收来自环境感知服务的终端风险信息;

c) 能接收来自环境感知服务的信息变更通知;

6、与权限管理服务联动

a) 接收来自权限服务的风险信息和传递;

b) 支持向权限服务发送控制指令;

c) 接收来自权限服务的权限变更通知。

7、与业务审计服务联动:

a) 将系统日志信息上传或同步到审计服务;

b) 接收来自审计服务的风险信息和传递。

8、与安全防护策略控制联动:

a) 接收来自安全防护策略控制的风险信息;

b) 可向安全防护策略控制传递风险信息。

9、与检查控制点联动:

a) 支持查询检控策略信息;

b) 支持接收来自检查控制点的各类访问风险信息;

c) 支持向检查控制点下发控制指令。

10、与业务应用/应用服务/数据服务进行联动

具体要求如下:

a) 支持业务应用/应用服务/数据服务查询策略信息;

b) 支持接收来自业务应用/应用服务/数据服务上报的各类访问风险信息;

c) 支持向业务应用/应用服务/数据服务下发控制指令;

11、联动通报:

a) 风险通报应支持通报状态校验机制,避免信息伪造;

b) 支持风险信息通报失败重传,避免信息丢失。

(三)云计算平台建设需求

建设公安大数据平台的基础设施服务层(IaaS)技术架构从下至上由基础资源、资源池和资源服务三部分组成,主要实现对基础设施资源的整合管理,屏蔽底层硬件异构性和组网复杂性,提供按需、弹性的计算、存储、网络资源池,同时通过资源服务能力构建负载均衡、弹性主机、资源编排等各种自动化云服务,提供标准服务接口支撑上层平台服务层、数据服务层、业务应用层的稳定运行,基础设施服务层是整个云计算平台的基础。

1.基础资源需求:

(1)网络设备:

应采用标准、成熟的国产品牌网络设备,支持SDN相关技术,能够实现网络横向和纵向虚拟化。云计算平台网络具有冗余架构、模块化设计和虚拟化设计等特性,进一步提高云计算平台的高可用性,易扩展性和安全性。按承载的云应用服务类型和部署环境,网络设备可分为核心层和接入层。

(2)服务器设备:

应采用国产品牌计算设备,支持Windows系列、主流linux等多种操作系统,能够实现多种计算资源虚拟化方式,具备万兆及以上以太网技术,按承载的云服务划分,可提供高密度计算服务器、物理机服务器、大数据计算服务器三种类型。高密度计算服务器用于构建云平台虚拟化资源池,主要适应运维管理、虚拟主机、云安全、内存对象缓存服务、负载均衡等使用场景;物理机服务器主要包括云平台管理服务器以及适用核心关键业务中不适合在云上运行的场景;大数据计算服务器主要用分布式计算型服务器进行部署,主要适应离线计算服务、分布式、并行计算服务等高I/O计算需求。

1) 高密度计算服务器:为运维管理、虚拟主机、云安全等提供基础计算能 力,根据业务请求的会话量和处理复杂度,会话量小,复杂度低的业务适合采用虚拟机部署;根据业务系统运行时的资源占用情况,资源占用低的业务适合采用虚拟机部署;本项目中平台服务层的大部分服务场景(主要是应用中间件服务和应用开发服务)都会构建在虚拟化资源池上。

2) 物理机服务器:主要为传统的关键业务提供关系数据库的运行环境,对服务器运算性能要求高。

3) 大数据计算服务器:为分布式计算服务、大数据计算、离线计算、全文检索服务等需要大容量存储、高I/O的云服务提供基础计算能力,主要通过分布式的方式提供数据的计算能力。

(3)存储设备:

应采用国产品牌存储设备,兼容前端windows、linux等操作系统的独立物理机设备以及云计算平台设备,存储内部构建存储资源池,内部设立冗余机制和高级功能,能够实现磁盘热插拔、在线扩展。存储设备为云计算平台提供存储资源服务,本次根据业务应用需求,按承载的云服务划分,分别为分布式块存储、分布式文件存储和分布式对象存储。存储设备具备冗余架构、模块化设计和分布式存储软件可伸缩性,提高云计算平台业务应用的性能、可用性、可靠性和安全性,避免单点故障,保障业务系统持续运行,保持良好的兼容性、经济性和易用性等。

1)分布式块存储资源。分布式块存储是为了满足云计算存储基础设施需求而设计的一种分布式块存储资源,可以将通用服务器的本地HDD、SSD等介质通过分布式技术组织成一个大规模存储资源池,对上层的应用和虚拟机提供业界标准接口,类似一个虚拟的分布式块存储,并且根据公安局内部的业务需求,动态调整存储容量。实现存储的动态扩容。

大规模云计算数据中心中,将通用存储服务器池化,建立大规模块存储资源池,提供标准的块存储数据访问接口。支持各种虚拟化平台和各种业务应用(如SQL、Web、行业应用等等);可以和各种云平台集成对接。

2)分布式文件存储资源。公安海量非结构化数据按照业务种类不同,采用分布式文件存储。支持使用纠删码技术,同时支持视频自动修复技术让视频类数据在任意数量盘故障情况下仍可实现部分修复,提供快照和复制功能;支持分级存储以便实现海量非结构化存储时将冷数据用廉价介质进行存放,架构无性能瓶颈;支持主流应用支持的接口。

3)分布式对象存储资源。分布式对象存储是为了满足公安厅内部云计算平台的云归档、云备份等应用场景。分布式存储采用服务器本地硬盘配合分布式对象存储软件,构建的分布式存储平台,内部支持对象级重删功能、多租户功能、QoS功能,提供对象的高性能存储服务,并且存储系统OpenStack Swift等标准接口,可以适用于公安内部的各种应用场景和服务需求。

2.资源服务需求:

本次建设的资源服务包含裸金属服务、虚拟机服务、分布式块存储服务、分布式文件存储服务、分布式对象存储服务、虚拟私有云服务、VPN服务、虚拟负载均衡服务、弹性IP服务9类IaaS层服务。

1)裸金属服务:

裸金属服务提供专属的物理服务器,提供高于虚拟化的计算性能,满足公安应用场景对高性能、稳定性、高安全性的需求。物理机发放应支持镜像选择功能,发放后的物理机服务可以与VM网络互通,同时可以和VPC等其他云服务灵活结合使用。

2)虚拟机服务:

虚拟机服务通过虚拟技术提供可弹性伸缩的计算服务,其管理方式比物理服务器更简单高效、更稳定、更安全的应用,降低开发运维的难度和整体 IT 成本,能够更专注于核心业务创新。

虚拟机服务利用虚拟化技术实现在宿主服务器上虚拟出与实体服务器具有同样计算/存储和网络的主机服务,是最基础的计算服务。该服务作为各警种应用程序的运行环境,支持申请虚拟机时设置云硬盘和弹性IP,虚拟机创建过程中,同时为虚拟机创建云硬盘和分配弹性IP。

3)分布式块存储服务:

采用分布式存储架构,通过软件层面的去中心化架构和数据冗余技术将多个独立服务器自带的存储组成的一个存储资源池,对外提供统一的、持久性块存储服务的一种存储系统。

块存储服务为弹性云主机提供块存储空间,具有更高的数据可靠性,更高的I/O吞吐能力和更加简单易用等特点,适用于文件系统、数据库或者其他需要块存储设备的系统软件或应用。

利用分布式块存储服务,构建云计算资源池中的云硬盘服务,可以为云计算资源池提供稳定、可靠的云硬盘服务平台

4)分布式文件存储服务:

通过标准的文件访问协议,提供多共享、高可靠和高可用等特性的文件访问方式。使用者应用可以通过挂载的方式使用文件系统。文件系统通常具备文件与目录操作、文件访问以及文件访问控制功能。

文件存储服务(也称弹性文件服务)为用户的弹性云服务器提供一个完全托管的共享文件存储,符合标准文件协议(NFS),能够弹性伸缩至PB规模,具备可扩展的性能,为海量数据、高带宽型应用提供有力支持。

5)分布式对象存储服务:

通过标准的OpenStack Swift对象访问协议,提供多共享、高可靠和高可用等特性的对象级数据访问方式。对象存储对外提供标准的S3/Swift(开源云平台OpenStack里的对象存储组件)两种协议接口,这两种协议已经是云存储领域的事实标准,不仅应用广泛,而且拥有丰富的生态系统(工具、开发包、第三方软件集成)支持。它们都基于HTTP(S)协议,是一种成熟的REST(REpresentational State Transfer)风格的协议。REST风格的协议遵循并利用了HTTP协议的设计原则,具有简单、可靠、无状态的特征,并天然的易于通过网络访问。

6)虚拟私有云服务(VPC):

VPC即虚拟私有云,是通过逻辑方式进行网络隔离,提供安全、隔离的网络环境,提供与传统网络无差别的虚拟网络。

虚拟私有云服务能够构建隔离的、自主配置和管理的虚拟网络环境。通过VPC,用户可以完全掌控虚拟网络,包括创建子网、创建路由、配置DHCP等。用户可以通过VPC分配不同的网段和VLAN池,方便管理,还可以在VPC内部根据不同的需要创建私有子网,保证网络隔离的同时,更加科学的划分网络范围,部署灵活、管理方便,还能满足租户不同的业务需求。对于公安局各类迁移上云的业务系统,应按照不同密级和安全隔离要求,划分不同的VPC,确保不同密级系统之间的网络隔离和安全访问。

7)VPN服务:

即虚拟专用网络服务,这是一种通过加密通道连接不同网络,为用户提供一条安全、可靠的加密通道的网络传输服务。利用网络架设专用网络,进行加密通讯,VPN网关通过对数据包的加密和数据包目标地址的转换实现远程访问,VPN可通过服务器、硬件、软件等多种方式实现。

VPN的基本原理是利用隧道技术,把VPN的报文封装在隧道中,利用骨干网建立专用的数据传输通道,实现报文的透明传输。隧道技术使用一种协议封装另外一种协议报文,而封装协议本身也可以被其他封装协议所封装或承载。

8)虚拟负载均衡服务:

虚拟负载均衡是一种将访问流量自动分发到多台云服务器上,实现流量分发、请求负载的服务。负载均衡不仅可以帮助用户消除应用系统的单点故障提高可靠性,还可以扩展应用系统对外的服务能力提升应用系统的可用性。

9)弹性IP服务:

弹性IP用于建立公网与私网之间的关联关系。弹性IP服务可帮助用户灵活地将IP地址与虚拟机、负载均衡器、裸金属服务器等云资源绑定或解绑,当有资源发生故障时可快速切换到不同资源,从而提高服务可用性。

3.平台支撑服务需求:

平台支撑服务包括API网关服务、传输交换服务、任务调度服务、服务总线、可视化服务、多媒体处理、加密解密、开发服务、地理位置服务等PaaS层服务,本次建设计划完成传输交换服务、任务调度服务、服务总线、API网关服务、可视化服务、多媒体处理、加密解密、地理位置服务,最终以部标为准。

(四)数据服务层需求

数据服务层主要构建数据服务体系以及开展数据治理工作。构建数据服务体系主要包括构建数据结构及构建公共服务能力;开展数据治理工作需要基于公安数据资源的现状及特点,构建包括数据接入、数据处理、数据治理、数据组织在内的数据资源服务体系,并以数据服务的方式对外提供服务或发布。

数据资源层按照数据接入、数据处理、数据治理、数据组织、数据服务五大部分进行设计。

4.1数据接入:

1.数据探查:通过对来源数据存储位置、提供方式、总量及更新情况、业务含义、字段格式语义、数据结构、数据质量等进行多维度分析,以达到认识数据的目的,为数据定义提供依据。

2.数据定义:

(1)数据处理定义:根据接入数据的特点,定义数据的抽取、转换、加载策略;定义各层数据资源间流转的提取、清洗、关联、比对、标识等处理的策略;定义按需进行的基础统计策略;定义按需调度的后续计算策略,以及处理后数据按原始库。

(2)数据组织定义:根据数据产生原始库、资源库、主题库、知识库、业务库的数据敏感度、数据规模(存量、增量)、数据预期使用规划、数据性质等因素,确定数据存储分区管理、数据加密、数据库技术、索引建立等策略。

(3)数据服务定义:结合数据组织,定义数据的查询检索、比对订阅、数据推送等服务策略及服务条件。

(4)数据治理定义:根据数据治理过程中的流程和管理要求,定义元数据规则、资源目录管理、数据分级分类规则、数据血缘关系、数据质量分析策略以及数据运维监控策略等内容。

(5)数据读取:主要是在完成数据探查及数据定义后,可以根据接入任务结果判断从源系统抽取数据或接收读取源系统推送的数据并检查数据是否成功与数据定义一致,不一致的停止接入,并重新进行数据的探查和定义;一致的执行进一步接入、处理。

3.数据对账:

(1)接入对账:提供资源从原始到接入的表名,数据量,对账结果显示,并提供查看对账详情 。

(2)分发对账:提供资源从原始到接入的表名,数据量,对账结果显示和分发操作,可以根据数据提供方的对账单与数据接入账单进行对账, 并提供销账等功能。

4.异构数据接入:

(1)警种异构数据接入:根据当前数据接入各项标准,对前端对接系统传输数据进行接入;针对接入的警种特殊数据进行数据源限定词标识;针对警种特殊数据应用业务方向与价值进行梳理;对接入数据进行标准化任务处理;对接入数据实现建表建库并实现系统使用。

(2)其他异构数据接入:针对当前异构系统,依照当前平台数据对接及服务调用方式等,进行环境改造;硬件、软件系统对接联调;与数据提供方进行数据资源协调、问题确认;与对接系统实现数据源对接联调;依照标准规则进行字段清洗,完成数据标准统一;对数据内容进行明细化提取,确保标准数据内数据内容的全挖掘;根据实际接入数据内容,开发相应标签规则并完成标签提取;针对提取数据进行建表语句梳理,完成入库;实现与对接系统间元数据服务的对接联调,确保数据服务的正常提供。

4.2数据处理:

1.数据提取:

(1)结构化数据提取:结构化提取的来源和目的数据格式均为结构化,主要是根据数据组织或业务需要进行数据的转换及整合,获得按照目的数据形式组织的数据。

(2)非结构化数据提取:通过自然语言处理技术,从文本数据中提取姓名、公民身份证号码、手机号、银行卡号、车牌号等要素及其相互关系、事件等信息,以及相关特征信息;从视频、图像数据中提取车牌、文字、图标、人员身份等实体信息,以及相关特征信息。

2.数据清洗:

(1)数据过滤:根据数据定义的过滤对象,调用垃圾样本库,对例如邮件、短信等数据进行辨别、分离和过滤;系统根据过滤规则对数据进行过滤。垃圾数据的处理支持垃圾数据单独存储;支持对垃圾数据进行标识;支持垃圾数据在全文数据中的检索。

(2)数据去重:根据数据定义环节定义好的重复规则判定结构化数据是否重复,如果数据重复,则直接滤除或者进入问题库。

(3)数据转换:将不同来源数据中的用代码表示的数据,统一转换成符合公安大数据标准的代码规范内容;对于超出数据元标准规定长度的数据,按照截断规则进行截断;对MAC地址、手机号码、身份证号、地址、经纬度、IP地址、日期时间等格式统一。

(4)数据校验:空值校验,取值范围校验, 公民身份证号码/手机号/车牌号/IMEI/MAC/IP 地址等校验, 数值校验,长度校验, 精度校验, 多字段条件校验,业务规则校验。

3.数据关联:

(1)关联回填:根据数据内容,回填人员的详细身份信息,如:根据银行账户信息,回填开户人的身份证号信息;针对包含车辆信息的日志数据,回填车辆详细信息,如:根据车牌号和车牌号类型,回填车主信息;针对轨迹、行为数据,回填空间信息,如:在旅店住店信息中回填旅店的地址、经纬度信息;针对互联网日志数据,回填认证账号信息,如:宽带账号、手机号、IMSI号信息;针对包含手机号的日志数据,回填手机号的注册信息,如:根据手机号信息,回填手机号的注册机主姓名、身份证号信息;对活动场所信息进行回填,根据活动场所编码,回填活动场所的名称、地址、经纬度信息。

(2)关联提取:根据提取规则,对各类数据资源中涉及的关键要素关系或关联进行提取,主要包括人、物、组织、时空、电子标识等要素之间的关联和其他业务要素之间的关联。

4.数据比对:

(1)结构化数据比对:检索比对目标内容与比对源字段内容完全相同;比对目标内容在比对源字段内容中出现,则匹配成功;比对目标内容与比对源指定的字段进行对比,指定的字段内容在比对目标内容区间,则匹配成功;比对目标内容为正则表达式,比对源指定的字段内容符合比对目标内容设定的规则,则匹配成功。

(2)非结构化数据比对:通过设定关键词及关键词组合,在接收到的非结构化数据进行内容比对;对比对目标文本进行特征抽取,与比对源中的文本数据进行文本特征比对,返回相似度数值结果、对应文本信息;通过对二进制文件(如文档文件、图片文件、音视频文件等)进行MD5值计算,与非结构化数据的MD5值进行比对,在数据中命中发现二进制文件相关信息。

(3)结构化与非结构化融合比对:通过将比对目标数据同时与指定的结构化和非结构化数据进行比对,在结构化和非结构化数据中发现比对目标相关信息,根据预设词表中的单关键词或关键词组合可对结构化数据、非结构化数据进行比对,检索出和关键词有关的数据。

5.数据标识:

(1)规则解析:解析标签规则,获取相应的参数信息。

(2)规则路由:根据规则指定执行平台,或根据打标类型、数据分布、系统可用资源等智能选择合适的执行平台。

(3)规则编译:编译生成执行平台能够识别的打标任务。

(4)规则执行:在任务管理中通过标签任务反馈执行结果。

6.数据分发:

(1)任务调度:通过统一接口接收数据分发任务,并将任务放到分发任务队列。支持数据分发任务配置,包括分发任务注册、报文模板配置和下端模块注册。

(2)分发任务队列:包括任务信息、任务执行情况及结果情况。

(3)数据分发:根据任务注册信息获取数据,根据模版组装数据,并向指定下端模块发送组装后的数据报文。

(4)分发统计:统计数据分发及处理情况。

(5)核账、销账:根据接入环节生成的账单,逐记录核账,以及完整账单的销账。

(6)任务监控:提供分发任务的状态信息监控。

4.3数据治理:

1.资源目录:

(1)数据资源目录:资源注册主要是通过对大数据平台各类数据资源的梳理,依据规范的元数据描述数据资源的各类特征,并按照一定的编码方法进行编目和分类,形成标准、规范、统一的数据资源目录;依据授权范围,根据部标规范定义的条件查询数据资源;对数据资源目录进行注册、更新、停用、启用、删除、汇聚操作,保证数据资源目录有效的管理,实现部、省、市数据资源目录的共享。资源管理可通过资源的分类和状态进行筛选;展示数据资源详细信息,包含:资源信息、数据项集信息、实体信息;展示数据资源实体详细信息,包含:实体基本信息、实体字段信息、实体索引信息、实体样例数据查询。

(2)服务资源目录:对服务资源进行新增、查询、修改、启用、停用、注销、汇聚功能,同时可以对服务所关联的应用资源进行修改;支持服务资源注册,注册项包含资源基本信息、服务类型、服务请求/响应信息示例;展示当前服务资源详细信息,包含服务资源基本信息、服务类型、服务请求/响应信息示例;注册服务规约,包括规约描述、请求信息、响应信息和服务返回代码;支持服务规约的启用、停用,可与服务资源进行关联。

(3)模型资源目录:提供模型的注册,包含模型资源目定义了模型所属的公安组织机构、模型的分类、模型的定义、模型所依赖的资源;提供模型的更新、启用、停用、模型元数据查询等功能。

(4)设备资源目录:提供设备资源注册,包含机器的数量、CPU内核数、内存容量、是否为虚拟机、存储介质、预估负载以及所处角色和管理单位;描述设备的算力及机器的数量、CPU内核数、内存容量、是否为虚拟机、存储介质、预估负载以及所处角色和管理单位。

(5)应用资源目录:提供应用资源注册,包含应用资源基本信息、管理单位、访问地址等;支持应用的启用、停用、注销。

(6)可视化资源目录:提供可视化资源注册,包含可视化资源基本信息、资源分类、使用场景描述等展示已注册的可视化资源,包含可视化资源基本信息、资源分类、使用场景描述等。

(7)资源审核:支持对新注册的数据资源进行审核;支持对新注册的服务资源进行审核。

(8)资源目录统计:展示数据资源目录、服务资源目录、应用资源目录、标签资源目录等不同资源目录的统计结果。

2.数据分级分类:

(1)数据分级:敏感内容字段包括证件号码、车牌号、银行卡号、枪支编号、人像特征、声纹特征、手机号码、网络账号、宽带账号、IP地址、域名、终端标识、全文内容、图片、音视频等;敏感规则可包括敏感身份、敏感关键词、敏感图片、敏感语音、敏感值域、其它敏感信息等;不同的敏感规则可以按照涉及的敏感程度设置敏感级别。敏感级别按照0X~9X进行设置,另外也可以根据需要对每一个级别进一步细化,最多可细化成01~99级,数值越小,敏感级别越高。

(2)数据分类:从数据来源中按数据获取方式进行分类,包括:管理、公开等方式。可按照数据来源应用系统类别进行二级分类;数据种类是按照标准数据项集的属性对数据资源进行分类,属性可包括数据资源目录注册的数据组织一级分类、数据组织二级分类以及数据资源标签分类;字段性质分类主要指对公安数据资源按照字段的安全属性以及字段与字段的关系进行分类;字段敏感度分类是对字段结合数据获取方式、数据种类、字段性质分类等不同的分类维度设置字段的敏感度类别。

(3)数据授权:支持根据数据分级分类信息, 并按照自定义授权(可以是用户角色, 也可以是部门等信息)维度进行授权。 对外提供授权接口供第三方业务使用。

3.数据血缘:

(1)血缘关系管理:记录上下游数据资源编码、数据项编码和数据资源转换规则等数据血缘信息,并实现动态更新。

(2)血缘关系分析:关系分析包含对溯源的分析和数据影响的分析。

(3)血缘关系查询:支持按照数据类别、数据项和转换规则进行数据血缘查询,并向数据资源目录提供服务接口。

4.模型管理:模型管理是平台通过模型框架引擎提供的个性化的、可配置的计算分析功能服务。

5.标签管理:标签是对数据、数据集某一特性、特征的描述。

6.数据质量管理:

(1)质量任务管理:为选中的资源配置检测单元并创建采集任务;显示采集任务的基本情况,并可以对任务进行启动,编辑和删除。

(2)数据采集任务管理:显示数据采集任务信息,并可以对任务进行编辑和启动。

(3)质量报告:显示离线数据信息,即通过DTI接入的数据;显示实时数据信息,即通过预处理接入的数据。

(4)知识库管理:对知识库进行增删改查操作。

7.标准管理:标准管理主要对字典、数据元、规则等做统一的管理,包括对其的添加,删除,修改以及查询搜索操作,还有对其使用状态的管理。

8.数据运维管理:数据运维管理是指通过采集数据接入、处理、组织和服务等各项任务的状态信息,对异常状态进行预警和处置,实现对各任务的实时监控和管理。

4.4数据组织:

1.原始库:原始库是保留原始数据,能够反映原始业务场景的数据集合。并在此基础上补充对各种来源数据进行一系列处理加工后产生的标准化数据、关联要素信息和标签信息。原始库实现数据的标准化和价值增值,为各类应用提供基本的数据支撑,为数据融合、数据抽象和进一步增值完成数据准备,并支持信息溯源、原始场景回溯等业务需要。

原始库在保留原始数据项的基础上,需要对原始数据项进行标准化处理,包括数据元与字段值的标准转换。同时需要按要求记录公共数据项,另外也可以根据实际业务需求记录关联回填信息、标签信息、回溯信息等。

2.资源库:资源库是综合各类数据资源建立的关键要素(各种标识类属性,如公民身份号码、车牌号、手机号、MAC等)以及要素之间关联、关系的公共数据集合。主要包括:要素及要素的行为、内容(言论)的时空分布,同主体要素间关联的时空分布,不同主体间要素关系的时空分布等。

资源库是公共数据,对各项业务工作都具有支撑作用,可以脱离任何业务而独立存在,也与每一项业务相关。

3.主题库:主体对象对人员主题、场所主题、物品主题、案件主题、事件主题、信息主题、组织主题的维度和属性进行了刻画。主题库的形成主要是从公安业务中的人、地、案、事、物、组织、信息角度,将准确可靠的数据按照多个维度属性进行重组。

4.知识库:主要包括基础知识库、基础算法库、智能信息处理知识库、规则库等。通过数据治理过程中对相关知识进行积累,进而形成知识库。

5.业务库:业务库是各专业领域业务的数据库,支撑各专业领域(如刑侦、治安等)业务的数据,记录业务过程,并为各业务活动提供数据的支撑等。

业务库主要由各业务部门主导建立,由某专题领域应用所产生的业务数据结合,具有某项业务的特性,如关注人员等,可以分为业务生产库、业务资源库和业务知识库。

业务库充分利用大数据平台各项组件能力,使用机器学习算法(如SVM、贝叶斯等),对接入的各类数据资源进行智能分析提取,按照数据特征、内容组成、等建立训练模型实现业务库资源深度治理,业务库各类资源再利用智能组件实现数据反哺、多层校验等。

6.业务要素索引库:业务要素索引库是对业务库的关键要素建立的全局索引,内容包括索引描述、业务系统描述及联系人描述。业务要素索引库主要用来解决业务关联和业务冲突问题。

4.5数据服务:

1.查询检索服务提供对数据中心的各类数据资源情况进行查询的服务;提供结构化数据查询,支持精确匹配、模糊匹配。

2.比对订阅服务:根据输入的比对条件或预先设定好的规则,与结构化或非结构化数据进行比对,并在比中时,实时返回比对结果信息。支持完全匹配、关键词匹配、正则匹配、多条件逻辑组合匹配;支持对接第三方组件实现语义匹配、音频匹配、图像匹配等能力的扩展;针对指定条件或规则,查询当前的信息比对订阅结果和比对订阅状态等;取消已经提交的比对订阅申请或正在执行的比对订阅任务。

3.数据鉴权服务:数据鉴权服务是基于数据的访问控制规则,实现数据的访问权限鉴别的过程。访问控制规则从内容敏感度、数据来源、数据种类、字段及字段关系分类四个维度进行资源权限的控制,资源鉴权通过用户的数据资源权限,使用数据鉴权服务实现对数据资源的访问控制。

4.数据操作服务:数据操作服务是指数据及数据表的增加、删除、修改等操作接口服务。

5.数据管理服务:数据服务管理是指按需将数据治理和数据服务的能力进行接口封装,为其他应用系统、平台内其他子系统提供服务。

4.6数据运营:

1.全景大屏:监控整个系统的数据概况及各个资源目录的数据情况和字段分类信息。

2.监控预警:显示数据治理过程中的任务告警列表,支持多个筛选条件查看任务信息,并支持在该界面进行告警处理;显示数据治理过程中的任务列表,支持多个筛选条件,可以对任务进行策略配置和标签配置;管理系统提供的默认监控策略,支持自定义模板策略配置;对任务标签进行增删改查操作,用于为监控任务配置标签,方便任务筛选,并可以为任务配置标签。

3.数据全流程监控:展示任务从原始层到标准层一整套流程的任务流状态,并可以查看数据治理详情。

4.数据接入统计:显示不同目录下原始资源列表及原始到接入阶段的数据量变化情况。

5.数据体检:数据体检通过检测元数据库中数据的格式、空值、唯一性、外键等来为数据的质量打分,并可以查看检测详情来查看具体检测出来的问题数据;体检管理可以为数据配置检测的规则,比如添加分空检验、格式检验等。

6.函数工厂:函数工厂展示各类函数信息,并可以通过运行函数来查看此函数的执行结果。

(五)大数据基础业务应用需求

5.1统一门户:

1.新闻展示:

(1)新闻列表概览:以列表形式展示多条新闻标题内容,同时对于置顶新闻提供简短信息预览。点击新闻标题后可进入新闻详情页,进一步查看新闻内容。

(2)新闻图片轮播:以图片轮播结合新闻标题形式展示新闻内容,用户点击图片或标题可进入新闻详情页进一步查看新闻具体信息。

(3)新闻详情:提供新闻详情展示,详情内容包括:新闻标题、发布时间、新闻正文。

2.经典应用:

(1)应用展示:展示当前平台已有的经典应用,可点击应用图标进一步查看应用详情。

(2)应用详情:提供对当前应用多维度介绍,内容包括:功能描述、应用情况、应用场景、建设单位等信息。

3.资源目录:

(1)资源目录分类:将平台拥有的资源目录按照数据资源、服务资源、设备资源、应用资源、标签资源、模型资源、可视化资源进行展示,点击任意资源入口可查看对应资源详情。

(2)资源目录展示:详细展示资源目录内容,包括资源目录描述、场景等。

4.软件服务:

(1)常用应用:将用户经常需要使用的应用作为常用应用,并将其展示在常用应用区域。

(2)应用分类:对于当前平台提供软件,根据其业务方向、功能差异、面向用户等区别进行分类。

(3)应用详情:提供对当前应用多维度介绍,内容包括:功能描述、应用情况、应用场景、建设单位等信息。

5.数据服务:为了便于用户快速掌握当前平台数据情况,数据服务向用户展示当前平台内各项数据情况,包括数据服务分类展示、数据服务清单以及数据资源清单情况。

6.平台服务:

(1)平台服务汇总:通过与平台层各类服务接口对接,平台服务模块展示当前大数据平台层各项服务,如:平台管理服务、基础服务、ETL服务等内容。同时点击相应服务内容可快速进入服务详情页进一步了解相关内容。

(2)平台服务详情:通过点击平台服务层具体服务内容,可进入相关的平台服务详情页面。平台服务详情可帮助用户了解对应的平台服务具体功能、使用情况、适用场景以及建设单位等信息。

7.基础设施服务:

(1)物理设备分类统计:物理设备分类统计模块对接查询IAAS层应用服务列表接口展示当前基础设施层物理设备情况。

(2)虚拟设备分类统计:虚拟设备分类统计模块展示当前基础设施层虚拟设备数量情况。

8.开发者社区:

(1)开发文档分类:根据平台开发文档用途,将开发文档分类便于用户快速获取所需资料。开发文档分类包括:标准规范类、开发指南、培训材料等。

(2)开发文档详情:点击具体开发文档可进入开发文档详情页面,了解文档具体内容。

(3)开发文档下载:开发者社区提供开发文档下载功能,可将文档下载后保存,便于文档共享。

(4)开发文档检索:平台开发工作众多,涉及开发指导文档种类多样,为了帮助开发者快速查询所需文档,提升工作效率,开发者社区提供开发文档检索功能,支持精确查询和模糊查询,帮助快速查询所需资料。

9.管理中心:

(1)管理中心鉴权登录:为了确保统一门户各项操作可管可控,在对统一门户各项内容进行操作前需要对用户身份进行鉴权认证,在通过认证以后可进行后续操作。

(2)首页配置:通过首页配置功能可快速配置首页基本信息,如门户名称标题、宣传语、版权信息、联系人、单位等内容。

(3)新闻管理:对统一门户新闻管理,包括新增、修改、删除新闻内容,对新闻内容进行置顶操作,上传图片新闻并设置为轮播等。

(4)服务管理:多统一门户平台服务、软件服务、基础设施服务进行管理,包括新增、修改、删除等操作,同时可对服务进行分类展示。

(5)数据服务配置:通过数据服务配置功能提供统一门户数据服务模块配置功能,勾选相应的数据服务内容可在统一门户首页展示相关数据情况。

(6)开发者社区管理:开发者社区管理功能提供对开发者社区文档及分类进行管理,包括分类新增、修改、删除,开发文档新增、修改、删除等。支持二级分类功能,提供文档附件上传。

(7)用户管理:用户管理功能提供对统一门户用户统一管理,管理内容包括:用户新增、修改、删除。

 5.2查询检索应用:

1.关键词检索:单要素检索是根据单个关键词或单个属性值进行的检索,对于单要素检索,需要明确单要素的属性,例如输入一串数字,需要选择是身份证号码、手机号码还是QQ号,系统也会根据规则推荐选择属性。批量要素检索是对单个要素检索的批量操作功能,一般对于有批量核查任务、大量线索的情况下进行使用。系统支持通过点击上传导入或拖拽TXT文本文档、Word文档、Excel表格文档等进行识别。

2.语义检索:支持对人员基本属性进行分析,包括身高、性别、年龄、国籍、体重、血型、学历等。除了对人员的本人搜索,系统还支持对人员相关的关系人进行分析,通过挖掘人员的关系人,可以扩大线索范围,更全面的描述人员特征。通过系统的标签体系,对系统内的人员进行标签分类,从而可以通过标签来检索人员。对于系统中已有的技战法,可以通过语义检索进行调用,支持人员/车辆活动规律、人员/车辆落脚点相关技战法分析。

3.多媒体检索:支持对接第三方人脸比对引擎,进行人物匹配检索,检索出与该人脸相似的人员信息。

4.全文检索:通过关键词查询非结构化数据。

5.结果处理:在检索过程中,可能会包含具有经纬度或位置的数据,可以将查询结果中涉及到地理轨迹经纬度位置的数据进行抽取,并将其标注在地图上,更直观查看数据的分布情况、轨迹情况,并附带信息概览。在检索过程中,可能会包含关系的数据,例如查询人员时返回了该人员的家庭成员、人员通联联系人、同行同住人员等。对于系统中已有的技战法,可以通过语义检索进行调用,支持人员/车辆活动规律、人员/车辆落脚点相关技战法分析。系统支持展示用户历史搜索情况,主要包括检索时间、关键词、图片、文档等信息。系统支持结果收藏,用户可以将档案、原始资源、图片等结果集存储,作为再次分析的数据来源。

6.语音检索:支持对接第三方语音识别引擎,提供通过语音进行内容输入的能力,补充文字输入的不足。

5.3背景核查应用:

智能背审:

1.核查场景设置:新建背景核查应用场景,定义核查使用的场景;对于已经存在的审查场景进行修改;对于不在需要的审查场景,通过场景删除功能可将其删除。

2.背景核查发起:支持对单个对象发起背景核查;支持通过单个或多个文件批量上传要核查对象信息。

3.核查结果展示:展示核查任务中涉及的人员总数、与当前核查场景涉及的标签匹配的人员数以及为匹配到标签的人员数量、比例情况;通过柱状统计图展示场景标签涉及的人员数量情况;对于背景审查的结果,通过输入关键字或结果属性可进行筛选;对于核查人员在进行核查时的标签命中情况以列表形式展示。

4.核查结果导出:对于核查结果,支持单个或多个批量导出。

5.前科劣迹情况背审:入室盗窃前科、入室抢劫前科、社区矫正、刑事犯罪前科、重大刑事犯罪前科、贩毒前科、涉毒前科、监狱在押、看守所羁押记录、拘留所羁押信息、戒毒所羁押信息、收教所羁押信息、扒窃前科、强奸前科。

6.残疾、低保、疾病情况背审: 民政低保(传染病)人员数据、残疾证信息。

7.交通情况背审:驾驶员违法信息、机动车违章处罚信息。

5.4全息档案:

1.人员全息档案:全息档案从民警实际工作出发,深入分析业务需求,帮助民警快速分析目标是谁、什么职业、拥有哪些物品、有什么样的生活习惯、经济能力如何、关系圈情况、与公安业务有哪些交集、经常出入哪些场所等问题。人员全息档案主要功能包括:概览信息、登记信息、行为轨迹、关系信息、案事件信息、地址信息。

2.车辆全息档案:通过车辆全息档案车辆概览模块,系统支持将车辆的基本信息、车主和历史驾驶人信息、车辆落脚点信息、出行时间规律信息、违章记录信息、活动区域信息进行集中式展示,便于用户对车辆的重点概要信息进行便捷掌握和研判。

3.手机全息档案:通过手机全息档案手机概览模块,系统支持将手机号基本信息、机主信息、使用人信息、落脚点信息、通联规律信息、关系分析信息、活动区域信息、行为分析信息进行集中式展示,便于用户对手机的重点概要信息进行便捷掌握和研判。

4.案件全息档案:通过案件全息档案案件概览模块,系统支持将与案件相关的人员、单位、物品、财产等信息进行集中式展示,便于办案人员进行案件概况的浏览和基本信息的研判掌握。

5.单位全息档案:通过单位全息档案单位概览模块,系统支持将单位的基本信息、与单位相关的人员信息进行集中式展示,便于用户一眼掌握单位的概况信息。

6.住宅全息档案:住宅全息档案功能旨在为警务人员提供全维度房屋信息描述,提供信息内容涵盖公安关注的人、地、物、事等多维度,通过房屋全息档案功能,能够帮助民警快速了解房屋住户、周边环境、关联的案事件、车辆、物流快递等信息。房屋全息档案模块主要功能包括:房屋概览信息、登记信息、车辆等。

7.警情全息档案:警情全息档案汇聚与警情相关各个环节、关系人以及警情处置等情况。

8.硬件特征串全息档案:通过硬件特征串全息档案单位概览模块,系统支持将与硬件特征串关联的手机号码、IMEI、IMSI、终端品牌、终端类型、终端型号、MAC、发现时间等进行集中式展示,便于用户一眼掌握与硬件应急按钮特征串相关联的概况信息。

9.即时通信全息档案:通过即时通信全息档案QQ/微信基本信息概览模块,系统支持将QQ号关联的用户ID、昵称、注册手机号、绑定手机号、出生日期、个性签名、注册邮箱、绑定邮箱、注册时间等信息进行集中式展示,便于用户对账号的重点概要信息进行便捷掌握和研判。

5.5图上研判:

1.图上研判总览:提供多图层的地图界面,支持对公安设备及场所的上图展示,提供人员技战法和车辆技战法的快速入口,提升用户图上作战工作效率。

2.定位:通过分析目标轨迹信息,结合时间维度可智能计算出可能的停留点信息;对于目标所产生的轨迹信息,可通过选择时间轴的方式进行过滤,完成时间轴选定;在查询某个要素的轨迹时,支持关联出要素的其他账号;支持回溯一段时间内要素的历史轨迹信息,并根据轨迹时序在地图上进行轨迹刻画;根据最新位置数据,查询要素出现的最后位置信息,支持上图展示;在查询某个要素的轨迹时,支持关联出要素的其他账号;查询要素近一个月的所有足迹信息,足迹支持按照省市区三级进行统计分析;对于查询的轨迹位置信息,支持通过人工干预的方式进行纠正,方便进行轨迹分析;对于轨迹信息,可根据实际需要进行归并,支持按天进行归并整合;分析在一段时间内,与查询要素有伴随行为的其他要素信息;对位置轨迹信息,支持切换为非连线的聚合展示方式;对轨迹回溯结果进一步分析,排除不符合逻辑以及常理的轨迹信息,实现轨迹的去噪和修正;支持以Excel的方式导出轨迹信息;系统支持输入经纬度进行定位,在输入经纬度后,地图将联动显示相应经纬度位置;对于携带位置信息的图层设备,通过输入图层设备号将联动展示设备所处位置;支持根据输入的地址进行联想操作,帮助用户快速选定所需定位的地址。

3.人员技战法:基于地图圈选多个区域并且分别指定时间范围,进行碰撞分析,分析出同时出现在至少两个以上区域的所有人员信息。支持利用手机号、MAC、硬件特征串、微信号等为条件,结合各类前端回传信息,实现人员轨迹精准刻画,获取与已知账号在相同地点、相同时间段内多次一起出现的目标账号。支持分析人员在指定时间段内疑似的停留地点;支持分析人员每次停留的时间明细;支持结合地图查看人员频繁的落脚点。根据用户输入的信息,分析在指定的时间段内所有和指定人员账号疑似同行的车辆。用户在地图上绘制出嫌疑人的逃跑路线,通过设置时间点,系统自动分析出和该逃跑路线轨迹高度相似的所有人员信息。用户指定特定区域(或者案发地附近区域),系统通过大数据分析出在指定时间段内(或者案发时间附近)出现在该区域,但是回溯日期内从未在此出现的所有人员。案发地潜逃人员是发现符合作案位置移动特征的人员,该类人员在案件发生前未出现在案发地,在案件发生时出现在案发地,并且在案件发生之后逃离案发地;支持同时查询多个人员要素信息,并在地图上进行轨迹比对展示;分析人员在指定时间段内的作息规律,包括“朝九晚五”、“昼伏夜出”等行为标签,以及频繁出现的地域信息,频繁活动的时段规律等;分析指定一批人员在指定时间内的聚集行为,展示聚集的地点、聚集的时间段等信息。

4.车辆技战法:基于地图圈选多个区域并且分别指定时间范围,进行碰撞分析,分析出同时出现在至少两个以上区域的所有车辆信息。系统根据用户指定的一个卡口(通过输入卡口编号、名称或者地图选取的方式),查询出指定时间范围内该卡口所有的过车数据。

根据用户输入的车辆信息,对车辆过车轨迹进行分析,根据过车时间误差以及过车距离误差,路线相似度、轨迹次数等多维度进行分析以得出疑似同行车辆。根据时间范围、停留时长等维度筛选,分析出车辆疑似的疑似落脚点地址。系统分析出指定车辆在指定时间段内的车辆行驶轨迹信息,再根据用户指定的过车时间误差以及过车距离误差,生成车辆经过的区域信息,系统会把所有生成的区域信息进行碰撞,出现且至少出现在两个区域以上的人员信息判定为疑似车载人员。用户在地图上绘制出嫌疑人的逃跑路线,通过设置时间点,系统自动分析出和该逃跑路线轨迹高度相似的所有车辆信息。用户指定特定区域(或者案发地附近区域),系统通过大数据分析出在指定时间段内(或者案发时间附近)出现在该区域,但是回溯日期内从未在此出现的所有车辆。案发地潜逃车辆是发现符合作案位置移动特征的车辆,该类车辆在案件发生前未出现在案发地,在案件发生时出现在案发地,并且在案件发生之后逃离案发地;支持同时查询多个车辆要素信息,并在地图上进行轨迹比对展示;分析车辆在指定时间段内的作息规律,包括“朝九晚五”、“昼伏夜出”等行为标签,以及频繁出现的地域信息,频繁活动的时段规律等;根据用户指定的区域范围以及时间,系统会分析出在指定时间段内在此区域范围内徘徊次数大于阀值次数的所有车辆信息。

5.工具集:通过图层工具对于多个图层内容快速进行筛选展示;根据当前图层大小与实际大小比例,通过点选连线方式可快速测绘出距离情况;地图复位功能可将当前展示地图信息恢复至刚打开时状态;可通过地图一键清屏功能将地图页面恢复至空白状态,进行快速清除;对于单个或多个对象的轨迹点信息,可通过轨迹批量上图功能进行展示;轨迹碰撞支持将查询要素的轨迹、用户在地图上圈选/画线的区域路线、用户选择的特定场所设备(基站、卡口等)进行碰撞分析,发现符合条件的要素。支持交集、差集、并集。

5.6智能关联:

1.信息检索:系统提供针对追踪目前进行全要素检索,支持通过身份证号、手机号查询人员基本信息,包括:照片、住址、收入水平、工作单位等;支持车牌号检索车辆关联车主信息,车辆上牌信息及变更信息。

2.行为追踪:依据大数据和人工智能技术深度挖掘数据价值,支持追踪车辆活动轨迹、查询人脸识别活动轨迹、人员的近期手机轨迹、人员的近期宾馆入住轨迹、人员的近期网吧上网轨迹和人员的近期自行车轨迹等内容。

3. 推荐位置:系统通过机器学习、模型算法,自动推荐与人员关系亲密的物流收发地址、与人员关系亲密的警案发生地址、与人员关系亲密的频繁上网地址、与人员关系亲密的频繁酒店入住地址、与人员关联度较高的卡口过车地址、与人员关联度较高的自行车刷卡地址、与人员关联度较高的前端设备采集地址等地址数据,实现情报线索主动发现。

4.关系人挖掘:深度挖掘追踪目标人员的所有关系人,如亲友、同户、同监、校友、通联等关系以及挖掘关系人近段时间的活动轨迹、挖掘关系人关联的静态地址信息。

5.区域概况:全面展示挖掘人员消失地点周边区域的所有感知设备分布、所有小区、所有小区内实有人口、暂住人员、寄住人口、周边区域的所有单位、所有公共场所信息。展示挖掘人员消失时段内,在消失地点出现的网吧上网人员、在消失地点出现的宾馆入住人员以及挖掘人员消失地点周边区域的所有发生过的警情与案件信息。

6.任务研判:

(1)区域追踪任务研判:基于追踪对象的所有关系人,从警案维度分析在追踪区域内出现过的关系人。

(2)区域追踪任务研判:基于追踪对象的所有关系人,从地址维度分析在追踪区域内出现过的关系人。

(3)区域追踪任务研判:基于追踪对象的所有关系人,从轨迹维度分析在追踪区域内出现过的关系人。

7.图层管理:从关系人、警案、地址、轨迹四个维度展示研判结果,研判结果上图;同一个研判对象的历史追踪任务,支持切换加载,每个追踪结果都分别上图。技防设备:人脸抓拍设备、道路监控、探头通过图层选择上图。场所图层上图,包括:小区、单位、宾馆、网吧。

8.红名单:针对追踪的目标人员是红名单用户时,中断追踪查询操作,并给出页面提示。

9.任务管理:历史追踪研判任务列表管理,支持帐号快速检索历史研判任务。

5.7警情上图:

1.警情展示:通过对警情发生时间、发生地点、涉及人员等多个维度进行统计,结合历史同期警情发生情况,对本市警情态势进行展示分析,分析警情高发区域。

2.统计概述:在查看警情详情的时候,对于警情中涉及的相关线索、人员、账号、地址进行展示,并结合人员主题数据,统计概述相关账号、人员信息进行落地和相关数据关联展示。

3.警情筛选:通过对警情编号、内容、日期、时间、类别等多个维度进行筛选。

4.时序播放:通过对自定义时间段内警情筛选不同时间段,按照时序在地图上自动播放。

5.热力图:通过以热力图方式展示警情数量、以热力图方式展示警情分布范围、以热力图方式展示集中发生地。

6.TOP10:直观展示责任区排名前十的警情数量。

7.警情态势:通过对警情发生时间、发生地点、涉及人员等多个维度进行统计,结合历史同期警情发生情况,对本市警情态势进行统计分析。

5.8智能串并:

1.案件精细化查询&

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值