ACF和PACF图表达了什么

本文解析了自相关函数(Autocorrelation Function, ACF)和偏自相关函数(Partial Autocorrelation Function, PACF)在理解时间序列数据中的作用,包括它们各自描述的关系,截尾与拖尾的概念,并强调了在建立预测模型时判断滞后的关键。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先ACF图说明的是当前序列值和当前序列过去之间的相关程度。
PACF描述的是残差(在去除滞后已经解释的影响之后)和下一个滞后值之间的相关性
截尾:ACF或者PACF在某阶之后快速趋于0的的情形。
拖尾:始终有非0取值,不会在K大于某个常数之后恒为0的情形。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值