首先ACF图说明的是当前序列值和当前序列过去之间的相关程度。
PACF描述的是残差(在去除滞后已经解释的影响之后)和下一个滞后值之间的相关性
截尾:ACF或者PACF在某阶之后快速趋于0的的情形。
拖尾:始终有非0取值,不会在K大于某个常数之后恒为0的情形。
ACF和PACF图表达了什么
最新推荐文章于 2025-10-13 20:02:33 发布
本文解析了自相关函数(Autocorrelation Function, ACF)和偏自相关函数(Partial Autocorrelation Function, PACF)在理解时间序列数据中的作用,包括它们各自描述的关系,截尾与拖尾的概念,并强调了在建立预测模型时判断滞后的关键。
1520





