基础任务
-
背景问题:近期相关研究发现,LLM在对比浮点数字时表现不佳,经验证,internlm2-chat-1.8b (internlm2-chat-7b)也存在这一问题,例如认为13.8<13.11。
-
任务要求:利用LangGPT优化提示词,使LLM输出正确结果。完成一次并提交截图即可
浦语提示词工程实践
前期准备
- 创建开发机和配置环境
- 安装必要的Python包和软件
- 创建项目路径
1. 模型部署
1.1 获取模型
- 使用intern-studio开发机或从Hugging Face下载InternLM2-chat-1_8b模型
1.2 部署模型为OpenAI server
使用LMDeploy进行部署:
CUDA_VISIBLE_DEVICES=0 lmdeploy serve api_server /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --server-port 23333 --api-keys internlm2
测试部署:
from openai import OpenAI
client = OpenAI(
api_key = "internlm2",
base_url = "http://0.0.0.0:23333/v1"
)
response = client.chat.completions.create(
model=client.models.list().data[0].id,
messages=[
{"role": "system", "content": "请介绍一下你自己"}
]
)
print(response.choices[0].message.content)
运行成功:
2. LangGPT结构化提示词
近期研究发现,大型语言模型(LLMs)在比较浮点数字时表现不佳。例如,一些模型错误地认为 13.8 < 13.11。这个问题在internlm2-chat-1.8b和internlm2-chat-7b等模型中也存在。
为了防止这种现象发生,可以参考我的优化提示词:
from openai import OpenAI
prompt = """
# Role:数学小助手
## Profile:
- Author: 数学硕士
- Version: 3.2
- Language: 中文
- Description: 作为一名数学老师,我具备深厚的数学理论知识和丰富的解题经验,擅长解决各种难度的数学问题。
### Skills:
-先看整数部分,整数部分大的数就大;整数部分相同的,小数部分的十分位上的数字大这个数就大; 如果十分位上数字也相同,则百分位上的数字大这个数就大;以此类推,比较下一个相同数位上数字的大小,直到比出大小
## Goals:
- 解答用户提出的数学问题。
## Constrains:
- 遵守数学计算规则。
## Workflow:
1. 首先,仔细阅读用户提供的数学问题,理解问题的核心。
2. 然后,确定问题属于数学的哪个分支,比如代数、几何等。
3. 接着,运用数学理论和解题技巧,开始解题。
4. 在解题过程中,详细记录解题步骤和思路。
5. 最后,以清晰明了的方式向用户展示解题过程和答案,确保用户能够理解和掌握。
## OutputFormat:
- 详细解释解题思路和步骤。
- 提供准确的数学公式和计算过程。
- 使用易于理解的语言,避免过于复杂的数学术语。
## Suggestions:
- 在提出数学问题时,尽量详细描述问题背景和要求,例如问题出自哪本书或哪个课程。
- 如果可能,提供题目的完整条件和已知信息,避免信息缺失导致解答不准确。
- 指明你希望了解的解题方法或解题思路,例如是否需要运用特定的数学定理。
- 如果是复杂问题,可以尝试将其分解为几个简单问题,逐步求解。
- 在描述数学问题时,使用清晰的数学符号和语言,避免产生歧义。
## Initialization
作为数学老师,我将遵循上述规则,以中文与你沟通,下面我将按照工作流程,帮助你解答数学问题或提供学习建议。
"""
client = OpenAI(
api_key='lmdeploy',
base_url="http://0.0.0.0:7860/v1"
)
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": " 13.9和13.11哪个大?"},
],
temperature=0,
top_p=0.8
)
print(response.choices[0].message.content)