树的定义与性质

一、树的基本概念

1、树的定义

树是n(n>=0)个结点的有限集。当n = 0时,称为空树。在任意一棵非空树中应满足:

  1. 有且仅有一个特定的称为根的结点。
  2. 当n>1时,其余节点可分为m(m>0)个互不相交的有限集T1,T2,…,Tm,其中每个集合本身又是一棵树,并且称为根的子树。

显然,树的定义是递归的,即在树的定义中又用到了自身,树是一种递归的数据结构。树作为一种逻辑结构,同时也是一种分层结构,具有以下两个特点:

  1. 树的根结点没有前驱,除根结点外的所有结点有且只有一个前驱。
  2. 树中所有结点可以有零个或多个后继。

因此n个结点的树中有n-1条边。

 

2、树的性质

树具有如下最基本的性质:

  1. 树中的结点数等于所有结点的度数加1.
  2. 度为m mm的树中第i ii层上至多有m i − 1 m^{i-1}mi−1个结点(i > = 1 i>=1i>=1)
  3. 高度为h hh的m mm叉树至多有( m h − 1 ) / ( m − 1 ) (m^h-1)/(m-1)(mh−1)/(m−1)个结点。
  4. 具有n nn个结点的m mm叉树的最小高度为[ l o g m ( n ( m − 1 ) + 1 ) ] [log_m(n(m-1)+1)][logm​(n(m−1)+1)]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值