自动驾驶感知
ShangCEO
这个作者很懒,什么都没留下…
展开
-
地面点云分割常见方法及优缺点
聚类方法通过将点云数据分为若干簇,根据点之间的相似性来识别地面点。线提取方法将点云数据划分为多个段,每个段通过拟合直线来表示地面。通道方法利用激光雷达传感器的垂直扫描线,将每条扫描线的数据分开处理,通过分析高度差和梯度来识别地面点。区域增长方法通过从初始种子点开始,根据相似性标准扩展区域,将符合条件的点加入同一地面区域。CNN 通过深度学习模型对点云数据进行地面分割,利用卷积层提取特征,分类地面和非地面点。距离图像方法将激光雷达数据投影到二维图像上,通过分析图像中像素的距离信息来识别地面点。原创 2024-05-25 17:16:43 · 1376 阅读 · 0 评论 -
yolov8学习
【yolov7环境中完全可以】,直接安装requirement.txt即可。问题1:CUDA error:out of memory。【注意】训练yolov7时已经单独安装过pytorch。问题2:tktinker会报错,按照网上的来就行。【训练时遇到的问题】原创 2024-05-07 15:29:16 · 270 阅读 · 0 评论 -
自动驾驶感知:非线性滤波和最优过滤器
原创 2024-02-02 21:45:29 · 370 阅读 · 0 评论 -
自动驾驶感知:非线性滤波
原创 2024-01-29 15:01:41 · 381 阅读 · 0 评论 -
自动驾驶感知:贝叶斯滤波和卡尔曼滤波学习导图(一)
原创 2024-01-28 12:06:47 · 355 阅读 · 0 评论 -
自动驾驶感知:单目标追踪算法学习思维导图
原创 2024-01-27 16:11:55 · 369 阅读 · 0 评论