【例 4】战略游戏 (树形dp)

题目描述

Bob 喜欢玩电脑游戏,特别是战略游戏。但是他经常无法找到快速玩过游戏的方法。现在他有个问题。

现在他有座古城堡,古城堡的路形成一棵树。他要在这棵树的节点上放置最少数目的士兵,使得这些士兵能够瞭望到所有的路。

注意:某个士兵在一个节点上时,与该节点相连的所有边都将能被瞭望到。

请你编一个程序,给定一棵树,帮 Bob 计算出他最少要放置的士兵数。

输入

输入数据表示一棵树,描述如下。

第一行一个数 N ,表示树中节点的数目。

第二到第 N+1 行,每行描述每个节点信息,依次为该节点编号 i,数值 k,k 表示后面有 k 条边与节点 i 相连,接下来 k 个数,分别是每条边的所连节点编号 r1,r2,⋯,rk。

对于一个有 N 个节点的树,节点标号在 0 到 N−1 之间,且在输入文件中每条边仅出现一次。

输出

输出仅包含一个数,为所求的最少士兵数。

样例输入
4
0 1 1
1 2 2 3
2 0
3 0
样例输出
1
提示

数据范围与提示:

对于 100% 的数据,有 0<N≤1500。

树形dp,可以用vector。

代码

 
   
#include <bits/stdc++.h>
#define ll long long
using namespace std;
ll n,x,y,k,j,f[2000][3],MIN;
ll i;
vector <int>a[2000];
void DFS(int son,int father) {
    int select=1,Uncheck=0;
    f[son][select]+=1;
    for(int i=0; i<a[son].size(); i++) {
        int sons=a[son][i];
        if(sons!=father) {
            DFS(sons,son);
            f[son][Uncheck]+=f[sons][select];
            f[son][select]+=min(f[sons][select],f[sons][Uncheck]);
        }
    }
}
int main() {
    cin>>n;
    for(i=1; i<=n; i++) {
        cin>>x>>k;
        for(j=1; j<=k; j++) {
            cin>>y;
            a[x].push_back(y);
            a[y].push_back(x);
        }
    }
    DFS(0,0);
    MIN=min(f[0][0],f[0][1]);
    cout<<MIN;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值