HDU电磁场与微波实验三——分布参数低通滤波器的设计、仿真和分析

一、实验内容

采用微带传输线设计低通滤波器;

设计指标:截止频率:500MHz

                  通带内(500MHz以下):S21>-0.5dB,S11<-20dB

                  阻带内:900MHz以上,S21<-30dB

仿真频段100MHz-1000MHz,步长10MHz,要求电路对称,端口阻抗50欧姆。

二、实验步骤

设置基本参数

28b8666a428e49eaba3fa9992ef31e67.png

f459dfecd1cc444f8b760ee7049a9138.png

创建原理图,右键Circuit Schematics

0eb577feac424a34afe9d794dbf8b860.png

设置微带线参数,双击MSUB

e6a0c0a8ba10464bb73b9cc504a5dc1c.png

1608af2201fc4ab8832035d11cbaa9e1.png

画原理图

680cef6562684c03a296c5eb36d82f32.png

255ff5f574014f8cb31024573eef4e62.png

编辑参数,双击各元件

412e7b521d1444179dd380817d698fa4.png

创建结果图

右键Graphs生成结果图,右键结果图,选择Add Measurement

4d9ca1604a1b45e98a9a0feb87079ece.png04f8d47674f248ae956cd37dc52e135f.png

计算参数

上方工具栏选择tools->TXline,根据参数计算出L值

5afa7c5be5cc42eaa2e55ae9ba5e9522.png

a3e796cd01074562bf90402a92549915.png

由结果可知,d1=d3=86.2233,d2=d4=78.3409,创建变量。

在上方工具栏找到Analyze382069785aa04204af919186e194e7e3.png,生成结果图。

接下来对结果图进行优化。

找到Project->Optimizer Goals,右键选择Add Optimizer Goal,添加三个优化条件。

a1a02dded48142ca9fd0d02e352cc19b.png

48891e22fe7f4dd6ba059efd39959c7c.png

f45d1f4523d4460d8264488aafb98b12.png

工具栏选择simulate->Optimize

b89e9c98165c4cdb913f2f3406815405.png

返回Optimizer界面点击start开始优化,Cost为0优化完成,d1-d4自动修改。

3dfd8e326d8541d195e69e0af1572c19.png

再次Analyze,生成优化后的最终结果图。

cdaff35e632243dca9ae2cc27af20c93.png

生成版图

希望每一位HDUer都能笑着上完实验课,respect

### 设计集总参数低通滤波器 为了在MATLAB中设计集总参数低通滤波器,可以遵循特定的设计流程并编写相应的脚本。此过程涉及定义必要的参数、计算元件值以及验证所设计的滤波器性能。 #### 定义设计规格 首先设定目标频率范围其他关键属性,比如通带纹波阻带衰减程度。对于切比雪夫类型的低通滤波器而言,这些因素决定了最终电路的行为模式[^1]。 ```matlab % 参数设置 Fs = 2e9; % 采样率 (Hz) Fpass = 0.2e9; % 通过频带边界频率 (Hz) Apass = 1; % 通带最大损耗 (dB) Fstop = 0.3e9; % 阻断区域起始频率 (Hz) Astop = 60; % 阻带最小衰减值 (dB) Wp = Fpass/(Fs/2); % 归一化后的通过边沿频率 Ws = Fstop/(Fs/2); % 归一化后的阻止边沿频率 ``` #### 计算原型滤波器阶数极点位置 基于上述给定条件来决定合适的滤波器阶次n,并求解对应的Chebyshev多项式的根即为所需电感L及电容C组件的位置表示形式。 ```matlab [n,Wn] = cheb1ord(Wp,Ws,Apass,Astop); [z,p,k] = cheby1(n,Apass,Wn,'low'); [Z,P,K] = lp2lp(z,p,k,Fpass); [b,a] = zp2tf(Z,P,K); [sos,g] = tf2sos(b,a); ``` 这里`cheb1ord()`函数用于寻找满足指定指标所需的最低级联节数目;而`cheby1()`, `lp2lp()`,`zp2tf()`, `tf2sos()`则分别负责生成相应传递函数表达式及其转换成标准二阶节(SOS)格式以便后续分析或实现时更易于管理。 #### 绘制幅频响应曲线 完成以上步骤之后就可以调用内置绘图命令展示理论上的幅度随频率变化情况了: ```matlab [h,f] = freqz(sos,[],Fs); figure; plot(f,abs(h)); xlabel('Frequency (Hz)'); ylabel('|H(j\omega)|'); title('Magnitude Response of Low Pass Filter'); grid on; % 极零分布图 figure; zplane(sos(:,1:3), sos(:,4:6)); title('Pole-Zero Plot'); ``` 这段程序片段能够直观反映出由前述算法确立起来的理想型LPF模型在整个工作区间内的表现特征——既包括增益平坦度也涵盖了相位线性度等方面的信息。 #### 显示滤波器系数及特性阻抗 最后还可以打印出具体的传输函数系数供进一步研究之用: ```matlab disp('Filter Coefficients:'); disp(['SOS Matrix:\n', mat2str(sos)]); disp(['Gain Factor:', num2str(g)]); Zc = sqrt(real(1./sum(a))); fprintf('Characteristic Impedance at %.2f GHz is approximately %.2f Ohms.\n',... Fpass*1e-9,Zc); ``` 这组语句不仅给出了构成该类模拟器件的核心要素之一—差分方程描述下的各项权重因子,同时也估算出了对应于选定中心频率处的有效终端电阻值大小。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值