目录
7.函数的声明跟定义
7.1 函数声明:
1. 告诉编译器有一个函数叫什么,参数是什么,返回类型是什么。但是具体是不是存在,函数 声明决定不了。
2. 函数的声明一般出现在函数的使用之前。要满足先声明后使用。
3. 函数的声明一般要放在头文件中的。
7.2 函数定义:
函数的定义是指函数的具体实现,交待函数的功能实现。
test.h
//函数的声明
int Add(int x, int y);
test.c
#include "test.h"
//函数Add的实现
int Add(int x, int y)
{
return x+y;
}
8.函数递归
8.1 什么是递归?
程序调用自身的编程技巧称为递归( recursion)。
递归做为一种算法在程序设计语言中广泛应用。 一个过程或函数在其定义或说明中有直接或间接 调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解, 递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。
递归的主要思考方式在于:把大事化小
8.2 递归的两个必要条件
存在限制条件,当满足这个限制条件的时候,递归便不再继续。
每次递归调用之后越来越接近这个限制条件。
8.2.1练习1
递归实际上就是:递推+回归
接受一个整型值(无符号),按照顺序打印它的每一位。
例如: 输入:1234,输出 1 2 3 4
void print(int n)
{
if (n > 9)
{
print(n / 10);
}
printf("%d ", n % 10);
}
int main()
{
int num = 0;
scanf("%d", & num);
print(num);
return 0;
}
递归过于抽象 这里画图表示。
函数之所以能实现调用,能实现递归
都是因为,函数在调用的时候会维护一个函数栈帧(内存上的一块区域)
函数调用开始,函数栈帧创建,函数调用结束,栈帧销毁
8.2.2 练习2
编写函数不允许创建临时变量,求字符串的长度
size_t my_strlen(char* str)
{
if (*str == '\0')
return 0;
else
return 1 + my_strlen(str + 1);
}
int main()
{
char arr[] = "abc";
size_t len = my_strlen(arr);
printf("%zd\n", len);
return 0;
}
同样的画图表示
8.3递归的迭代
8.3.1练习3
求n的阶乘。(不考虑溢出)
因为
!5=1*2*3*4*5
!4=1*2*3*4
所以5!=5*!4
我可以理解为N的阶乘等N*(N-1)
int Fac(int n)
{
if (n <= 1)
return 1;
else
return n * Fac(n - 1);
}
int main()
{
int n = 0;
scanf("%d", &n);
int r = Fac(n);
printf("%d", r);
return 0;
}
8.3.2练习4
求第n个斐波那契数。(不考虑溢出)
1 1 2 3 5 8 13 21 34 55
int Fib(int n)
{
if (n <=2)
{
return 1;
}
else
return Fib(n - 1) + Fib(n - 2);
}
int main()
{
int n = 0;
scanf("%d", &n);
int r = Fib(n);
printf("%d", r);
return 0;
}
但是我们发现有问题;
在使用 fib 这个函数的时候如果我们要计算第50个斐波那契数字的时候特别耗费时间。
使用 factorial 函数求10000的阶乘(不考虑结果的正确性),程序会崩溃。
为什么呢?
我们发现 fib 函数在调用的过程中很多计算其实在一直重复。
那我们如何改进呢?
在调试 factorial 函数的时候,如果你的参数比较大,那就会报错: stack overflow(栈溢出)
这样的信息。
系统分配给程序的栈空间是有限的,但是如果出现了死循环,或者(死递归),这样有可能导致一
直开辟栈空间,最终产生栈空间耗尽的情况,这样的现象我们称为栈溢出。
那如何解决上述的问题:
1. 将递归改写成非递归。
2. 使用static对象替代 nonstatic 局部对象。在递归函数设计中,可以使用 static 对象替代
nonstatic 局部对象(即栈对象),这不
仅可以减少每次递归调用和返回时产生和释放 nonstatic 对象的开销,而且 static 对象还可以保
存递归调用的中间状态,并且可为
各个调用层所访问
比如,下面代码就采用了,非递归的方式来实现:
int Fac(int n)
{
int i = 0;
int r = 1;
for (i = 1; i <= n; i++)
{
r = r * i;
}
return r;
int main()
{
int n = 0;
scanf("%d", &n);
int r = Fac(n);
printf("%d", r);
return 0;
}
int Fib(int n)
{
int a = 1;
int b = 1;
int c = 1;
while (n >= 3)
{
c = a + b;
a = b;
b = c;
n--;
}
return c;
}
int main()
{
int n = 0;
scanf("%d", &n);
int r = Fib(n);
printf("%d", r);
return 0;
}
提示:
1. 许多问题是以递归的形式进行解释的,这只是因为它比非递归的形式更为清晰。
2. 但是这些问题的迭代实现往往比递归实现效率更高,虽然代码的可读性稍微差些。
3. 当一个问题相当复杂,难以用迭代实现时,此时递归实现的简洁性便可以补偿它所带来的运行时开销。