数据挖掘实验(感知器)

本文通过实际操作介绍数据挖掘中的感知器模型,重点探讨其在机器学习中的应用,结合Python实现,揭示了感知器在分类问题上的基本原理和步骤。
摘要由CSDN通过智能技术生成
import numpy as np

# 感知器算法
class Perceptron:
    def __init__(self):
        self.lr = 1.0  # 学习率
        self.weights = None  # 权重矩阵

    # 训练模型
    def train(self, X, Y, num_iterations=10):
        # 初始化权重矩阵
        self.weights = np.zeros(X.shape[1])

        for _ in range(num_iterations):
            for i in range(len(X)):
                x = X[i]
                y = Y[i]

                # 使用当前权重矩阵预测样本标签
                y_pred = self.predict(x)

                # 如果预测错误,更新权重矩阵
                if y * y_pred <= 0:
                    self.weights += self.lr * y * x

    # 使用训练好的模型预测标签
    def predict(self, x):
        return np.sign(np.dot(self.weights, x))

# 训练集和标签
train_docs = np.array([[2,1],[3,2],[4,3],[5,3],[5,4],[2,4],[3,4],[4,5],[3,5]])
train_labels = np.array([1,1,1,1,1,-1,-1,-1,-1])

# 测试集
test_doc = np.array([4,5])

# 进行归一化处理
train_docs_norm = train_docs / np.linalg.nor
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值