自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(23)
  • 收藏
  • 关注

原创 jeston编译配置cuda加速版opencv

解决方法 安装python3-dev替换它。

2024-10-21 16:20:14 480 1

原创 电脑远程控制jeston

刚开始使用jeston时 经常会给它单独配一套鼠标键盘显示屏,桌面非常混乱,有时候往里头传资料也不知道怎么传,经常使用U盘从主机copy到jeston中,非常麻烦!下面介绍里两个比较好用的软件,可以提供工作效率,并且让桌面变得干净整洁!注意:两个软件都是通过网络来连接主机和jeston板子的,下载使用两个软件并不繁琐,只需要输入正确的网络地址就可以连接,所以我重点在第3部分介绍一下我是怎么配置网络的。

2024-10-21 15:31:57 430

原创 jeston nano配置虚拟环境记录

安装完成后,会提示successful install torch1.10.0,就安装成功了(我这里没有用sudo安装torch是因为我使用了虚拟环境,sudo会打破虚拟环境的封闭)与windows的anconda类似,为了方便环境管理,我会在配置环境前先装一个miniconda(除了minconda,其他类似的环境管理的软件可以),我参照了下面这个博客。如何使用cd命令进入刚刚torch包的下载路径,执行以下命令,最后一条注意自己下载的torch版本,根据实际情况写。保存关闭 别忘记更新。

2024-10-15 16:51:06 644

原创 记录解决ubuntu安装curl报错:E: Package ‘curl‘ has no installation candidate

执行该指令后会出现下面这样的版本信息。把上面复制的内容粘贴到这个打开的文件中。后面就可以正常下载curl了。最后update一下即可。

2024-10-11 16:04:42 508

原创 虚拟机ubuntu配置opencv和opencv_contrib

ubuntu配置opencv

2024-09-07 13:41:23 1044

原创 虚拟机ubuntu与主机共享文件夹

记录虚拟机ubuntu与主机共享文件夹

2024-09-07 11:19:43 681

原创 vscode配置opencv

在左侧空白处点击右键 新建一个mian.cpp文件里面写两行图像处理简单代码 测试一下能不能正常编译。把下图bin路径 添加到环境变量里(方法同添加gcc/g++环境变量)包点击install 安装 为了方便还可以安装。修改.vscode 里的下面三个文件的路径配置。下载后点解.exe运行得到下面这个文件。打开vscode 打开程序文件。能看到版本号就是安装成功了。

2024-09-04 12:45:03 525

原创 数据增强常见方法汇总

数据增强可以减少模型对训练数据的依赖,降低过拟合风险。通过增加训练数据集的多样性,使模型能够学习到更多数据特征,从而提高对未见过的数据的泛化能力。图像数据增强技术主要通过对图像进行各种变换来增加训练数据的多样性。图像的一部分应用于新图像。数据增强可以通过对现有数据进行变换,而不需要额外采集数据,从而降低训练成本。

2024-08-24 16:09:06 518

原创 yolo入门 yolov8下载安装--2024.8

喂饭级别配置yolov8环境

2024-08-15 11:12:28 2729

原创 什么是张量

学习使用pytorc库进行深度学习网络搭建时,张量这个词总是不定时会出现。其实,Pytorch中的所有操作都是在张量的基础上进行的,今天就来了解张量到底是什么由PyTorch官网官网介绍可知,一个Tensor是一个包含单一数据类型的多维矩阵。

2024-08-14 17:40:03 1195

原创 使用Mask R-CNN实现图像分割

初始化图像路径和用于检索图像的目标(掩码)。创建一个自定义数据集类,用于加载和预处理血细胞图像及其掩模。init此构造函数通过列出所有图像文件名,并为图像和蒙版构建完整路径来初始化数据集。getitem该函数加载图像及其掩码,对掩码进行预处理以创建二进制掩码计算边界框调整图像和蒙版的大小应用转换。len此函数返回数据集中的图像总数。这将加载一个预先训练的 Mask R-CNN 模型,该模型具有 ResNet-50 主干和特征金字塔网络 (FPN)。这设置了我们的数据集中的类别数量。

2024-08-12 18:06:09 852

原创 nvcc --version和 nvidia-smi 的CUDA版本不一致怎么办,如何选择与CUDA版本匹配的Pytorch

nvcc --version和 nvidia-smi 的CUDA版本不一致怎么办,如何选择与CUDA版本匹配的Pytorch

2024-08-10 09:53:47 839

原创 pytorch搭建网络流程之--读取数据集

下面这段代码主要读取png格式的数据集。根据数据集格式不同有不同的读取方式。

2024-08-09 11:09:05 173

转载 torch包中封装好的几种损失函数

weight (Tensor, optional) – 自定义的每个 batch 元素的 loss 的权重. 必须是一个长度为 “nbatch” 的 的 Tensor。weight (Tensor, optional) – 自定义的每个 batch 元素的 loss 的权重. 必须是一个长度 为 “nbatch” 的 Tensor。mean:返回loss和的平均值;weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor。

2024-08-07 10:37:40 1293

原创 学习K-means聚类算法

本文主要讨论k-means 聚类算法背后的基础知识和数学原理,以及如何在 scikit-learn 中实现它。聚类(或聚类分析)是一种技术,允许我们找到相似对象的群组,这些对象彼此之间的关系比与其他群组中的对象更密切。聚类的商业应用示例包括根据不同主题对文档、音乐和电影进行分组,或者基于共同购买行为找到共享类似兴趣的客户,作为推荐引擎的基础。在本文中,我们将学习关于最流行的聚类算法之一:k-means 的知识,这在学术界和工业界都被广泛使用。

2024-08-06 15:48:38 1054

原创 CNN可视化工具

CNN在线交互可视化工具,把CNN拆开了揉碎了,告诉小白们CNN究竟是怎么一回事,为什么可以辨识物品。它用TensorFlow.js加载了一个10层的预训练模型,相当于在你的浏览器上跑一个CNN模型,只需要打开电脑,就能了解CNN究竟是怎么回事。而且,这个网页工具还可以实现交互,只要点击其中任何一个格子——就是CNN中的“神经元”,就能显示它的输入是哪些、经过了怎样细微的变化。甚至,连每一次卷积运算都能看得清。

2024-08-05 10:57:06 496

原创 PyTorch之数据加载与预处理

这个数据集实际上是imagenet数据集标注为face的图片当中在 dlib 面部检测(dlib’s pose estimation) 表现良好的图片。在这篇教程中我们学习了如何构造和使用数据集类(datasets),转换(transforms)和数据加载器(dataloader)。包提供了常用的数据集类(datasets)和转换(transforms)。我们会把它们写成可调用的类的形式而不是简单的函数,这样就不需要每次调用时传递一遍参数。将csv中的标注点数据读入(N,2)数组中,其中N是特征点的数量。

2024-08-04 10:00:00 750

原创 基于图像处理的火焰检测算法(颜色+边缘)

最后,根据第一种技术和第二种技术的结果应用基于颜色的分割技术来识别火灾的感兴趣区域(ROI)。例如,与那些传统方法相比,使用这种类型的检测的成本更便宜,并且这种类型的系统的实现要简单得多。其次,与任何其他传统检测方法相比,火灾探测系统的响应时间更快,因为基于视觉传感器的火灾探测系统不需要任何类型的条件来触发传感器,并且能够根据所使用的摄像机监控大面积区域。我们方法的第一步是检测火焰的颜色,火焰的颜色主要是红色。然后,结合这两种技术的结果,创建一个参数,从图像中分割出必要的细节,以检测和识别火灾。

2024-08-03 13:56:06 1080

原创 边缘和轮廓检测——图像处理、OpenCV应用

轮廓检测的目标是确定闭合物体的形状,特别是因为对于具有相同颜色强度的连续点,寻找轮廓的方法是确定的,而边缘检测是通过检测颜色强度内的变化来进行的。对整个图像进行边缘检测,而仅对图像内的对象进行轮廓检测。

2024-08-02 09:45:00 618

原创 从0到1实现神经网络(Python)下——代码实现神经网络

经过前面的学习 已经了解了神经网络。下面将实现一个完整的神经网络。

2024-08-01 17:00:00 197

原创 从0到1实现神经网络(Python)中

神经网络的总体训练过程是这样的:从我们的数据集中选择一个样本,用随机梯度下降法进行优化——每次我们都只针对一个样本进行优化;计算每个权重或截距项对损失的偏导用更新等式更新每个权重和截距项;重复第一步;

2024-08-01 15:45:00 2032

原创 从0到1实现神经网络(Python)上

这篇文章完全是为新手准备的。通过用Python从头实现一个神经网络来理解神经网络的原理,分为上下两章:神经网络的基本结构——神经元;在神经元中使用S型激活函数;神经网络就是连接在一起的神经元;

2024-08-01 10:00:00 279

原创 新手配置基础深度学习Pytorch环境

系统:Win10 64位操作系统安装组合:Anaconda+PyTorch(GPU版)

2024-07-31 12:14:22 567

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除