介绍
由于经常发生大面积火灾,对人类健康和安全造成影响,火灾探测作为工具的应用越来越多。当前基于电子传感器的检测方法通常依赖于热和压力传感器。然而这些方法有一个致命的缺陷,即它们只有在达到一定条件时才会起作用。在最坏的情况下,传感器损坏或配置不正确可能会在真正发生火灾时造成严重伤亡。为了解决这些问题,安装了电子监控摄像头。因此,此类设备对基于计算机视觉的火灾探测的需求不断增加。此类设备包括各种闭路电视、无线摄像头甚至无人机。
与传统的检测方法相比,这些类型的系统具有多种独特的优势。例如,与那些传统方法相比,使用这种类型的检测的成本更便宜,并且这种类型的系统的实现要简单得多。其次,与任何其他传统检测方法相比,火灾探测系统的响应时间更快,因为基于视觉传感器的火灾探测系统不需要任何类型的条件来触发传感器,并且能够根据所使用的摄像机监控大面积区域。这类系统的最大好处是可以以图像或视频的形式保存火源,这大大促进了火灾探测方法的多样化。
在本文中,我们提出了一种将火焰颜色信息与火焰边缘信息相结合的算法。然后,结合这两种技术的结果,创建一个参数,从图像中分割出必要的细节,以检测和识别火灾。
提议的算法
我们方法的第一步是检测火焰的颜色,火焰的颜色主要是红色。然后我们在原始图像上使用Sobel边缘检测来检测火灾的边缘,同时删除小于100的阈值。然后我们应用分割技术,该技