2024年最新数据仓库的基本架构是什么样的?,2024年阿里大数据开发岗面试必问

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

(2).为什么要存细节数据?细节数据是必需的,数据仓库的分析需求会时刻变化,而有了细节数据就可以做到以不变应万变,但如果我们只存储根据某些需求搭建起来的数据模型,那么显然对于频繁变动的需求会手足无措;

(3).为什么要面向主题?面向主题是数据仓库的第一特性,主要是指合理地组织数据以方面实现分析。对于源数据而言,其数据组织形式是多样的,像点击流的数据格式是未经优化的,前台数据库的数据是基于OLTP操作组织优化的,这些可能都不适合分析,而整理成面向主题的组织形式才是真正地利于分析的,比如将点击流日志整理成页面(Page)、访问(Visit或Session)、用户(Visitor)三个主题,这样可以明显提升分析的效率。

数据仓库基于维护细节数据的基础上在对数据进行处理,使其真正地能够应用于分析。主要包括三个方面:

数据的聚合

这里的聚合数据指的是基于特定需求的简单聚合(基于多维数据的聚合体现在多维数据模型中),简单聚合可以是网站的总Pageviews、Visits、Unique Visitors等汇总数据,也可以是Avg. time on page、Avg. time on site等平均数据,这些数据可以直接地展示于报表上。

多维数据模型

多维数据模型提供了多角度多层次的分析应用,比如基于时间维、地域维等构建的销售星形模型、雪花模型,可以实现在各时间维度和地域维度的交叉查询,以及基于时间维和地域维的细分。所以多维数据模型的应用一般都是基于联机分析处理(Online Analytical Process, OLAP)的,而面向特定需求群体的数据集市也会基于多维数据模型进行构建。

业务模型

这里的业务模型指的是基于某些数据分析和决策支持而建立起来的数据模型,比如我之前介绍过的用户评价模型、关联推荐模型、RFM分析模型等,或者是决策支持的线性规划模型、库存模型等;同时,数据挖掘中前期数据的处理也可以在这里完成。

数据仓库的数据应用

报表展示

报表几乎是每个数据仓库的必不可少的一类数据应用,将聚合数据和多维分析数据展示到报表,提供了最为简单和直观的数据。

即席查询

理论上数据仓库的所有数据(包括细节数据、聚合数据、多维数据和分析数据)都应该开放即席查询,即席查询提供了足够灵活的数据获取方式,用户可以根据自己的需要查询获取数据,并提供导出到Excel等外部文件的功能。

数据分析

数据分析大部分可以基于构建的业务模型展开,当然也可以使用聚合的数据进行趋势分析、比较分析、相关分析等,而多维数据模型提供了多维分析的数据基础;同时从细节数据中获取一些样本数据进行特定的分析也是较为常见的一种途径。

数据挖掘

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值