目录
一、什么是灰色预测
灰色预测主要特点是模型使用的不是原始数据序列,而是生成的数据序列。核心体系是灰色模型(Grey Model,简称GM),对原始数据作累加生成得到近似的指数规律再进行建模。
- 优点:不需要很多数据,能解决历史数据少、序列的完整性和可靠性低的问题。
- 缺点:只使用于中短期的预测,只适用于指数增长的预测。
二、GM(1,1)预测模型
GM(1,1)表示模型是1阶微分方程,且只含1个变量的灰色模型。
一次累加序列
参考数据,1次累加生成序列(1-AGO)为:
式中
均值生成序列
均值生成序列:
式中:,需要注意的是均值生成序列会比一次累加序列的个数少一。
建立灰微分方程
由于我们实现的是指数增长的预测,所以指数模型对应的数学描述为,对应的微分方程为一阶常系数微分方程。
。
求解该微分方程可得到指数型原函数。我们建立对应的灰微分方程:
求解微分方程
我们对微分方程两边同时积分得到:
等式的右边为b,主要就是对等式左边的两个定积分进行分析。
我们分析第一个定积分可以发现,该定积分就是一次累计序列的第K项和第K-1项相减,最后得到原始数据的第K项。
接下来分析第二个定积分:
这里我们可以看到,我们没有办法直接求出该定积分,因为我们需要对下x(t)进行积分,而我们需要的就是一个x(t)的原函数,这就相当于自己证自己。所以我们这里采用定积分的几何意义:梯形面积。通过求取梯形面积来近似的逼近原函数。而第K-1和第K个序列之间的梯形的面积就是均值生成序列。
此时我