信号与系统理论中,占空比为50%的周期信号只含有奇次谐波,实际中,时钟信号并不是理想的占空比为50%的梯形波,因此,会同时含有奇偶次谐波,一个典型的案例,如下图所示,DDR仿真中,如果用模拟的理想激励源,频谱中只会存在基频及其奇次谐波。
利用这种自定义激励源产生的时域波形,与实测的DDR时钟信号相比,几乎看不出明显的差异,这种配置用于普通的信号仿真是没有问题的。
但是,当使用厂商提供的IBIS驱动文件进行仿真时,从获取的频谱图中,不仅可以看到奇次谐波,还可以看到偶次谐波,说明,真实的电路行为中,时钟信号的占空比是非理想化的,频谱已经发生了变化。
并且,通过观察实测的时钟信号频谱图,也验证了该变化的真实性,如下图所示,仿真和测试中,均发现了丰富的奇偶次谐波的存在。
这种信号频谱的差异,不得不引起设计者的关注,因为对于常规的信号完整性仿真而言,不需要关心频谱的变化,但是,如果是评估和考察EMC/EMI问题,这种差异将会导致结果的巨大的偏差,因此,不容忽视。
一种计算曲线边界的便捷方法是通过包络表示信号源的频谱分布,一个梯形波频谱的连续包络计算公式定义如下,频谱的单位为dBμV:
上式中的具体定义如下:
根据以上的公式集合,通过确定曲线中的3个频率范围,可以将连续梯形波的频谱定义如下:
1. 当,包络为常数,等于
;
2. 当,包络等于
,以斜率-20dB/dec下降;
3. 当,包络等于
,以斜率-40dB/dec下降。
最终的时域与频域的转换效果如下图所示:
举例来说,当Vg0=5V,tr=2ns,f=8MHz时,计算与仿真的结果完全匹配:
因此,通过这种快速的计算方法,设计者可以较为有效地预测时钟信号的频谱分布,具有一定的设计参考价值。