- 博客(23)
- 收藏
- 关注
原创 数据结构与算法设计-期末大作业-基于pandas的实习生薪资水平分析与预测算法比较
本文基于公开招聘数据,对数据挖掘和机器学习算法实习生的岗位需求进行分析,主要从需求分布、岗位薪资等多个维度进行探讨。采用爬虫技术获取实习僧网站的招聘信息,数据经清洗和标准化后,分别应用Adaboost、决策树、随机森林等算法完成训练,根据平均绝对误差、均方误差和R平方误差对预测结果评价效果得出随机森林算法效果最好,最终选用随机森林算法来构建职位薪资的预测模型。随机森林算法对职位薪酬预测结果能给招聘者发布招聘信息和求职者查询适合自己的岗位提供一个合理、科学的参考依据,可极大提高招聘求职的成功率。
2025-02-21 12:21:14
571
原创 数据结构与算法设计-作业6-二分搜索相对于线性搜索的性能优势演示&DFS、BFS 和 A* 搜索算法在迷宫搜索中的表现对比
请创建包含100万个数的列表,用本章定义的和函数分别在该列表中查找多个数并计时,演示二分搜索相对于线性搜索的性能优势。按照原始数据结构的顺序遍历空间中的每个元素,直到找到搜索内容或到达数据结构的末尾;的原理:查看一定范围内有序元素的中间位置的元素,将其与所查找的元素进行比较,根据比较结果将搜索范围缩小一半,然后重复上述过程。时间复杂度为O(logn),优于顺序搜索的O(n);二分搜索需要对有序的数据结构才能进行搜索。
2025-02-21 11:36:02
952
原创 数据结构与算法设计-作业5-matplotlib绘图&数据分析可视化
创建了一个从 0 到 2 之间的 400 个均匀分布的点,用于定义自变量 x 的取值范围。这将用于绘制连续的曲线。:将 x 和 y 的值绘制成曲线。label 用于设置图例的显示文本,使用 LaTeX 格式显示函数形式,限制 y 轴的显示范围,使其从 0 开始,上限略高于 y 的最大值,以便给图像留出空间。根据mrbook.xlsx文件中的数据绘制双y轴可视化数据分析表。(b) 在图中添加合适的轴刻度、轴标签和图名等,并展示结果。限制 x 轴的显示范围为 0 到 2。其中x的取值范围为[0, 2]。
2025-02-21 11:31:23
507
原创 数据结构与算法设计-作业4-excel表合并与数据整理
aa文件夹里有若干个Excel表文件,看上去非常凌乱。请编写Python程序将其中相同类别的Excel表合并到一起,有利于今后管理和分析数据。
2025-02-21 11:27:50
808
原创 数据结构与算法设计-作业3-会员数据集数据清洗
有一份会员数据集(data.xlsx),第一列代表会员的姓名,第二列是性别,第三列是年龄,第四列是体重,第五列是身高。数据集存在以下问题:列名为数字,不能知道具体的数据的含义数据的全面性检查数据的唯一性检查请编写Python程序对数据集进行清洗,输出清洗之后的数据。
2025-02-21 11:23:39
339
原创 数据结构与算法设计-作业1-判断素数个数&约瑟夫环问题
设计程序,判断 1~N 之间有多少个素数,要求:N 以程序参数的方式输入对输入的参数N,需遍历 1~N 之间的每一个数 K,判断其是否为素数,判断方法为检查 K 是否能被 2 到 N-1 之间的任何整数整除,因此需要两重循环。为使代码更为简洁易读,将其拆分为两个函数:素数判断:prime_find(K) 函数用于判断一个数 K 是否为素数:素数计数:定义 prime_count(N) 函数,初始化计数器 count 和存储素数的列表 ls_prime。通过循环遍历从 1 到 N 的每个整数 k,调用
2025-02-21 11:04:00
914
原创 k-wave工具箱学习-官方文档入门
第一个输入 kgrid 定义计算网格的属性。这决定了如何将连续介质划分为均匀分布的网格点。% x_size为实际x方向长度,单位为米其中,Nx 为网格点数,dx 为网格大小(建议 dx = dy = dz)。matlab 没有单位,k-Wave 单位大多为国际单位。生成后的 kgrid 结构体包含函数使用的属性,如下所示**(属性以 k 开头的基本不用理解)**kgrid.k标量波数的格子 ND 网格(不太用理解)网格支持的最大空间频率等间隔的时间值数组(即时间步,时域)kgrid.Nt时间步数。
2024-04-15 20:11:11
1384
1
原创 论文学习:光声图像数据处理与实验设计思路
重点关注本文如何设计、获取、处理光声数据集,算法之类的略过。本文甚至没有用任何实验数据,全部是模拟仿真,只有最后的验证集是小鼠大脑血管数据,这就是2019年的论文水平。。。。原文标题:Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal这些实验使用了合成和解剖学上逼真的数据集,以探究卷积神经网络(特别是UNet和FD-UNet)在从光声断层成像(PAT)图像中去除伪影的有效性。
2024-04-15 20:07:50
872
1
原创 MRI转光声图像:数据集的选择与预处理
cycleGAN所需:256x256的jpg图像,各5000张左右。这里的数据基本上都没用上= =都是血泪啊 走的歪路。
2024-04-15 20:02:38
1449
1
原创 论文学习2:基于深度学习的光声图像分析(分割与降噪)
这篇文章介绍了一种基于深度学习的方法,用于多光谱光声成像的语义分割,以促进图像的解释性。使用手动标注的光声和超声成像数据作为参考,使得可以以监督方式训练基于深度学习的分割算法。通过对16名健康人类志愿者采集的实验数据进行验证研究,文章展示了自动组织分割如何能够用于创建多光谱光声图像的强大分析和可视化。高维信息的直观表示方式,使得这样的预处理算法成为促进光声成像临床转化的有价值的手段。光声显微成像(PAM成像)由于激光强度的最大允许曝光、超声在组织中的衰减以及换能器的固有噪声而受到噪声的影响。
2024-03-29 19:52:35
1324
1
原创 论文学习:基于机器学习的光声图像分析1
这篇论文提出了一种新的方法,利用中观光声成像(Mesoscopic Photoacoustic Imaging, PAI)技术和高级图像分析技术,来非侵入性地定量化和分析活体肿瘤内的3D血管网络结构。通过对人源化乳腺癌患者衍生的异种移植物(PDX)模型进行光声成像,研究团队能够详细捕获和评估肿瘤血管的复杂性和异质性。
2024-03-27 19:51:25
1132
原创 k-wave Chapter2:时变源问题
在初值问题示例中,通过将源值分配到 source.p0 来定义初始压力分布。要定义时变压力源,必须分配源掩码(定义哪些网格点属于压力源)和时变源输入。在 source.p_mask 中分配二进制矩阵(即由 1 和 0 组成的矩阵,其尺寸与计算网格相同)来定义源掩码,其中 1 代表构成源一部分的网格点。然后,时变输入信号被分配到 source.p,其索引为 source.p(source_point_index,time_index)。
2023-10-29 23:02:45
418
1
原创 k-wave三维模拟及AS模拟
轴对称模拟的执行方式与二维模拟类似。不过,在轴对称坐标系中,x 维对应轴向,y 维对应径向,如下图所示。坐标系关于 x 轴是旋转对称的,因此 y 轴上的一个点对应三维空间中的一个连续圆。定义好网格参数后,kWaveGrid 将以与二维模拟相同的方式进行介质离散化。相比之下,对于 kspaceFirstOrder2D,笛卡尔点 y = 0 位于计算网格的中间。对于异质声波传播介质,介质属性以与计算网格大小相同的二维矩阵形式给出。在本例中,介质属性被划分为两个半空间。
2023-10-29 17:22:09
574
1
原创 kspaceSecondOrder 模拟函数
本示例简要介绍了kspaceSecondOrder 模拟函数。它以同质传播介质和使用二进制传感器掩码示例为基础。
2023-10-29 15:42:06
189
1
原创 k-wave:定义高斯传感器频率响应
本例说明了如何计算具有高斯形状响应的探测器的频率响应(例如压电超声传感器)。该示例以均质传播介质示例为基础。传感器的频率响应是通过传感器输入结构的 frequency_response 字段指定的。该字段接受两个参数,一个是中心频率,另一个是频率响应的带宽。传感器带宽定义为百分比,用于控制滤波器的半最大全宽(FWHM),其中 FWHM = % 带宽 * 中心频率。
2023-10-29 15:02:01
302
1
原创 k-wave学习:声波传播的时域仿真(以kspaceFirstOrder2D为例)
kspaceFirstOrder2D 模拟压缩波在二维同质或异质声学介质中的时域传播,给定四个输入结构:kgrid、medium、source 和sensor。计算基于一阶 k 空间模型,该模型考虑了幂律吸收以及异质声速和密度。如果指定了 medium.BonA,还将模拟累积非线性效应。在每个时间步长(由 kgrid.dt 和 kgrid.Nt 或 kgrid.t_array 定义),记录并存储由 sensor.mask 定义的位置处的声场参数。
2023-10-28 21:10:28
3241
2
原创 计算机体系结构综合课程设计:使用Verilog HDL设计简单的RISC处理器
使用Verilog HDL设计简单的RISC处理器,简称为处理器Z,具体要求如下。
2023-06-21 14:08:40
760
二手房房价分析与预测系统:用Python数据分析方法实现“二手房数据分析预测系统”,用于对二手房数据进行分析和统计,并根据数据中的重要特征实现房屋价格的预测
2025-02-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人