pandas 预处理


第1关:数据读取与合并

任务描述
本关任务:加载 csv 数据集,实现 DataFrame 合并。

知识讲解
Pandas 模块导入
import pandas as pd

读取 csv 文件
In [1]: pd.read_csv(path) #返回DataFrame
index_col 是 read_csv 方法的常用参数,常用作读取文件的指定列为行索引。例如有数据文件 test.csv ,其内容为:

name,a,b,c
x,1,2,3
y,4,5,6
把第 0 列作为行索引的代码如下:

In [1]: df = pd.read_csv('test.csv',index_col = 0)#df的行索引就是test.csv的第0列。
In [2]: df.index
Out[2]: Index(['x', 'y'], dtype='object', name='name')
In [3]: df.values
Out[3]:
array([[1, 2, 3],
       [4, 5, 6]], dtype=int64)
In [4]: df.columns
Out[4]: Index(['a', 'b', 'c'], dtype='object')

DataFrame合并
DataFrame 合并有三种方法:concat 、 append 和 merge 。

详情参见教材和官方文档。

注意:若出现如下错误,直接添加参数 sort=True 即可。

To accept the future behavior, pass ‘sort=True’.
……
编程要求
根据提示,在右侧编辑器补充代码,完成本关任务。

测试说明
平台会对你的代码进行测试,若与预期输出一致,则算通关。
示例代码如下:

# -*- coding: utf-8 -*-
 
'''
第1关 数据读取与合并
现有源自世界银行的四个数据集:
1)economy-60-78.csv,
2)economy-79-19.csv,
3)population-60-78.csv,
4)population-79-19.csv,
其中分别存放了不同时间段(1960-1978和1979-2019)的
中国经济相关数据和中国人口及教育相关数据。
'''
#请将上述数据集内容读取至DataFrame结构中,
#年份为列索引,Indicator Name为行索引,
#观察其结构和内容,把它们合并为一个DataFrame,命名为ChinaData。
#输出ChinaData的形状
############begin############
import pandas as pd
d1 = pd.read_csv('economy-60-78.csv',index_col = 0)
d2 = pd.read_csv('economy-79-19.csv',index_col = 0)
d3 = pd.read_csv('population-60-78.csv',index_col = 0)
d4 = pd.read_csv('population-79-19.csv',index_col = 0)
 
# print(d1.shape)  #(2, 19)
# print(d2.shape)  #(2, 41)
# print(d3.shape)  #(116, 19)
# print(d4.shape)  #(116, 41)
 
d12 = pd.concat([d1,d2],axis = 1,sort=True)
d34 = pd.concat([d3,d4],axis = 1,sort=True)  #axis = 0为纵向拼接,axis = 1为横向拼接。
ChinaData = pd.concat([d34,d12],sort=True)
 
print(ChinaData.shape)  #(119, 60)
#############end#############

在这里插入图片描述

第2关:数据清洗

任务描述
本关任务:数据清洗
包括:空白行删除、数据完整性检验、数据填充、插值等内容。

相关知识
为了完成本关任务,你需要掌握:

删除缺失值;
检测缺失值;
填充缺失值;
拉格朗日插值;
线性插值。
删除缺失值
DataFrame.dropna 方法用于删除含有缺失值的行或列,关键参数:axis 和how。

axis
表示轴向,0 为行,1 为列,默认 0。

how
表示删除形式,how = ‘any’ 表示只要有缺失值就删除;how=‘all’ 表示全为缺失值才删除。

检测缺失值
DataFrame.isnull() 识别缺失值,返回包含True和False的 DataFrame。
DataFrame.notnull() 方法识别非缺失值,返回包含True和False的 DataFrame。
上述两方法结合 sum 函数可用于检测数据序列中缺失值的分布情况。

填充缺失值
DataFrame.fillna 方法能用指定值替换缺失值。关键参数:value、method和axis。

value
表示指定的填充值。

method
method = 'bfill’后向填充,用后面的非缺失值填充;
method = 'ffill’前向填充,用前面的非缺失值填充。

axis
表示操作轴向,默认1(列)。

拉格朗日插值

from scipy.interpolate import lagrange
formula = lagrange(x,y)#formula是通过lagrange方法生成的公式,x和y为数据序列
ins_y = formula(ins_x)#ins_x为缺失值所在位置,ins_y为插值结果。

线性插值

from scipy.interpolate import interp1d#1是数字一
formula = interp1d(x,y,kind = 'linear')#formula是通过linear方法生成的公式,x和y为数据序列
ins_y = formula(ins_x)#ins_x为缺失值所在位置,ins_y为插值结果。

编程要求
根据提示,在右侧编辑器补充代码,完成本关任务。

测试说明
平台会对你的代码进行测试,若与预期输出一致,则算通关。

开始你的任务吧,祝你成功!

示例代码如下:

# -*- coding: utf-8 -*-
'''
第2关 数据清洗
'''
import pandas as pd
d1 = pd.read_csv('economy-60-78.csv',index_col = 0)
d2 = pd.read_csv('economy-79-19.csv',index_col = 0)
d3 = pd.read_csv('population-60-78.csv',index_col = 0)
d4 = pd.read_csv('population-79-19.csv',index_col = 0)
d12 = pd.concat([d1,d2],axis = 1,sort=True)
d34 = pd.concat([d3,d4],axis = 1,sort=True)
ChinaData = pd.concat([d34,d12],sort=True)
'''
请针对ChinaData完成如下操作。
'''
# 2.1 删除空白行
# 提示:dropna,inplace
############begin############
print('原表形状',ChinaData.shape)
linenum = ChinaData.shape[0]
ChinaData.dropna(how='all',inplace=True)
print('新表形状',ChinaData.shape)
linenum -=ChinaData.shape[0]
print("%d个空白行被删除。"%linenum)
#############end#############

# 2.2 查找数据最完整(空值最少)的年份并输出
# 提示:notnull(),根据值找索引(上课讲过的方法)
############begin############
#print(ChinaData.notnull().sum().sort_values(ascending=False)[0])
nullsummary = ChinaData.isnull().sum()
y = nullsummary.loc[nullsummary==nullsummary.min()].index[0]
print(y)

#############end#############

# 2.3 前向填充"男性吸烟率(吸烟男性占所有成年人比例)",输出2000年至2019年的数据
# fillna,ffill
############begin############

cigarette = ChinaData.loc['男性吸烟率(吸烟男性占所有成年人比例)',:]
print(cigarette.fillna(method = 'ffill').loc['2000':'2019'])

#############end#############

# 2.4 用2015年到2018年4年的gdp数据对2019年GDP数值进行拉格朗日插值预测,输出预测结果
# lagrange,
# 注意:x的取值从0开始,即x = np.array([0,1,2,3]),代表2015至2018 4年,2019年的x取值为4。
############begin############

from scipy.interpolate import lagrange
gdp = ChinaData.loc['GDP',:]
lagf = lagrange(range(0,4),gdp.values[-5:-1])
print(lagf(4))
#############end#############

# 2.5 用线性插值法填充“入学率,高等院校,男生(占总人数的百分比)”1995年到2002年数据,并输出插值后的94年至03年的数据
# interp1d
############begin############

from scipy.interpolate import interp1d
student = ChinaData.loc['入学率,高等院校,男生(占总人数的百分比)',:]
linevalue = interp1d([0,9],[student.loc['1994'],student.loc['2003']],kind = 'linear')
student.loc['1995':'2002'] = linevalue(range(1,9))
print(student.loc['1994':'2003'])

#############end#############

在这里插入图片描述

第3关:数据转换

任务描述
本关任务:数据转换。包括数据标准化和数据离散化。

知识讲解
为了完成本关任务,你需要掌握:1、离差标准化,2、等宽离散化。

离差标准化
离差标准化就是对原始数据进行线性变换并映射至 [0,1] 区间的方法。该方法需要自行编写实现函数,建议参考教材或网络资源自行实现。

等宽离散化
等宽离散化将数据的值域分成宽度相同区间,根据数据所在区间取值,实现连续变量的离散化。pandas.cut函数可以实现这种操作,关键参数:x和bins。

x
待离散化的数据。

bins
离散化类别数。

注意:
获得离散化结果后,常用value_counts()方法对离散化结果进行频数统计,以观察离散化数据的分布情况。

编程要求
根据提示,在右侧编辑器补充代码,完成本关任务。

测试说明
平台会对你的代码进行测试,若与预期输出一致,则算通关。

开始你的任务吧,祝你成功!

示例代码如下:

# -*- coding: utf-8 -*-

'''
第3关 数据转换
'''
import pandas as pd
d1 = pd.read_csv('economy-60-78.csv',index_col = 0)
d2 = pd.read_csv('economy-79-19.csv',index_col = 0)
d3 = pd.read_csv('population-60-78.csv',index_col = 0)
d4 = pd.read_csv('population-79-19.csv',index_col = 0)
d12 = pd.concat([d1,d2],axis = 1,sort=True)
d34 = pd.concat([d3,d4],axis = 1,sort=True)
ChinaData = pd.concat([d34,d12],sort=True)
'''
请针对ChinaData实现下列操作
'''
# 3.1 对“人口,总数”数据(1960-2018)进行离差标准化,并输出。
# 提示:自定义离差标准化函数,注意统计年份区间
############begin############

def MinMaxScale(data):
    data = (data-data.min())/(data.max()-data.min())
    return data
population = ChinaData.loc['人口,总数',:][:-1]
npopu = MinMaxScale(population)
print(npopu)

#############end#############

# 3.2 对“GDP 增长率(年百分比)”(1961-2018)数据进行等宽离散化为7类,输出分布情况
# 提示:cut,注意统计年份区间
############begin############

gdpRatio = ChinaData.loc['GDP 增长率(年百分比)',:][1:-1]
result = pd.cut(gdpRatio,7)
print(result.value_counts())

#############end#############

在这里插入图片描述


  • 9
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
pandas预处理是指使用Python中的pandas库对原始数据进行处理和清洗,以便进行进一步的数据分析和建模。 在数据分析和建模过程中,原始数据通常包含了大量的噪声、异常值、缺失值等,需要进行清洗和处理,以保证数据的有效性和准确性。pandas库提供了一系列的方法和函数,可以方便地对数据进行预处理,包括数据清洗、数据转换、数据重构等。 pandas预处理的主要步骤包括: 1. 导入数据集并观察数据的基本信息,如数据类型、缺失值、重复值等。 ```python import pandas as pd df = pd.read_csv('data.csv') print(df.head()) print(df.info()) print(df.describe()) ``` 2. 对数据进行清洗,处理缺失值、重复值等。 ```python # 处理缺失值 df.dropna(inplace=True) # 处理重复值 df.drop_duplicates(inplace=True) ``` 3. 对数据进行特征工程,包括特征选择、特征提取、特征变换等。 ```python # 特征选择 features = ['feature1', 'feature2', 'feature3'] X = df[features] y = df['label'] # 特征提取 from sklearn.feature_extraction.text import CountVectorizer vectorizer = CountVectorizer() X = vectorizer.fit_transform(df['text']) # 特征变换 from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X = scaler.fit_transform(X) ``` 4. 对数据进行可视化分析,以便更好地理解数据。 ```python import matplotlib.pyplot as plt plt.hist(df['feature1'], bins=10) plt.show() ``` 总之,pandas预处理是数据分析和建模过程中非常重要的一步,通过对原始数据进行清洗和处理,可以提高数据的准确性和可靠性,从而得到更加有用的信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值