目录
1.什么是全波形反演(Full waveform inversion)?
1.什么是全波形反演(Full waveform inversion)?
简单来说,就是通过接收到的地震波形数据,反向推算出地下介质的速度分布或其他相关属
性。但传统的地震成像方法往往只利用了波形的一部分信息(如振幅、相位等),而全波形反演则尝试利用整个波形的详细信息来更精确地描绘地下结构。
2.全波形反演过程
数据采集:通过地震勘探设备向地下发射地震波,并接收反射回来的波形数据。
正演模拟:基于一个初始的地下速度模型,使用计算机模拟地震波在地层中的传播过程,得到模拟的波形数据。
反演迭代:将模拟的波形数据与实际的接收波形数据进行对比,通过优化算法不断调整地下速度模型,使得模拟波形与实际波形之间的差异逐渐减小。
结果解释:当模拟波形与实际波形之间的差异达到一定的精度要求时,认为此时的地下速度模型已经较好地反映了真实的地下结构,可以用于后续的地质解释和储层预测等工作。
3.什么是速度模型
地下结构通常被称为“速度模型”,每个像素点代表在该区域内的波传播速度。
提到的“传播速度”是指地震波在不同地质材料中传播的速度。不同的地质材料(如岩石、土壤等)会影响波的传播速度。
4.FWI的数学表示
常密度二维声波方程式:
解释:
v(x, z): 在空间位置(x,z)上的纵波速度,这个参数决定了地震波在地下介质中的传播速度。
u(x, z, t): 描述在空间位置(x,z)和时间t上声波的波幅(位移)。
s(x, z, t): 源信号,表示施加在介质上的驱动信号(例如地震波的发射)。
正演过程,从地下速度模型v出发,利用方程计算出相应的波幅u。这个过程中可以理解为通过已知的介质特性来预测地震波在介质中传播的效果。公式 H(v)= u 表示的是从速度模型v到波幅u的映射,在这个映射中H是一个正演算子。
反演过程,目标是从实际测量到的波幅d(可能被一些因素影响)推导出地下速度模型v。希望找到一个逆算子 ,使得通过该算子从观测数据d中获得速度模型。
难点:
1.非线性特性
正演算子 H 往往是非线性的,这意味着小的输入(例如地下速度模型)变化会导致输出(波幅)发生较大的变化,这使得从观测数据反推出速度模型变得更加复杂。
2.测量数据的不完善
实际采集到的波幅数据 d 可能由于多种因素(如仪器噪声、环境影响)而不够准确。此外,这些数据本身也是通过前期的正演模拟得到,存储局限和误差问题均可能引入复杂性。
因此反演算法往往需要通过迭代优化的方法来不断逼近真实值,以最小化计算得到的波形与实际观测数据之间的差异
5.FWI的端到端深度学习解释
解释
端到端方法,在机器学习的语境下,指的是从原始输入数据到最终输出结果,整个过程被视为一个整体的映射关系,无需在中间过程中进行人工特征提取或额外处理。在全波形反演中,端到端方法意味着直接从地震波形数据出发,通过深度学习模型自动学习并提取特征,最终输出地下介质的速度模型。
核心思想
将FWI问题转化为一个机器学习问题,使用深度神经网络来逼近全波形反演的逆算子
通过训练一个神经网络,使其能够从地震数据中直接预测地下速度模型。
训练过程
- 数据准备: 准备已知的“地震数据”和对应的“速度模型”。这些数据可以是通过正演模拟得到的。
- 网络训练: 使用这些已知的数据来训练一个神经网络。
- 模型预测: 训练好的网络可以用于对新的地震数据进行预测,得到相应的“速度模型”。
优点
传统的FWI方法需要大量迭代,计算量大。深度学习方法可以有效地提高计算速度。
深度学习可以处理更复杂的地质结构,可以更好地解决非线性问题。
6.DL-FWI的基本发展和分类
1.严格端到端
这是DL-FWI早期采用的一种主要手段。它尝试通过设计构建完善的网络去拟合函数,将设计重点放在网络的设计中。这些网络大多是CNN的编-解码结构,但这种设计可能会弱化一些物理意义和空间信息。
这张图展示了一个复杂的卷积神经网络结构,强调了卷积层、下采样和上采样的过程。
用途
简单的说如果这个模型用于图像,它可以将模糊的图像清晰化,或者从一张图像中创建另一张图像。
如果用于地震数据,它可以帮助从复杂的反射数据中生成地下的速度模型。
各层功能(简单比喻)
假设你现在在观察一个图像,首先看到的是整个图像(输入层)。
然后,用放大镜查看图像,找出有趣的细节(卷积层)。
然后,把这些细节做一个概要记住,但不保留所有信息(池化层)。
然后,把简化后的数据恢复成更高的分辨率,理解为把之前概要的信息拼接成一个更清晰的图像。(上采样层)。
最后,得到的新图像就是我们想要的结果(输出层)
2.更复杂的网络结构(如GAN)
上面图展示了一个生成对抗网络(GAN)的结构,通过生成器和判别器的对抗训练来提高对地震数据的预测精度。生成器试图生成与真实数据相似的预测,而判别器则努力区分真实数据和生成的数据。通过这种方式,模型能够不断改进,最终实现更准确的地震数据反演。
3.后面学习的主要3个架构
FCNVMB (速度模型构建的全卷积网络)
InversionNet (反演网络)
SeisInvNet (地震反演网络)