完全背包问题 模板 C++实现

问题: n 种物品和一个容量是 的背包,每种物品都有无限件可用

i 种物品的重量是 weight [ i ] ,价值是 value [ i ]

求解将哪些物品装入背包,可使这些物品的总重量不超过背包容量,且总价值最大。输出最大价值。

算法1:朴素写法(三重循环)。

创建二维数组 dpdp [ i ][ j ] 表示从前 i 个物品中选,在总重量不超过 j 的前提下,所能挑选的最大价值。

从第一件物品开始遍历,从容量为 0 开始遍历。因为每件物品可以使用的数量不限,所以不能像  0/1背包 一样在列状态转移方程时只减去一个当前物品的重量 weight [ i - 1 ] ,要减去 k 个(weight [ i - 1 ] 中使用 i - 1 是因为 weight 数组 value 数组 都是从下标 0 开始记录的,而 dp 数组 是从下标 1 开始的。可以按照自己习惯修改)。 

代码:

for (int i = 1; i <= n; i++)
	for (int j = 0; j <= c; j++)
		for (int k = 0; k * weight[i-1] <= j; k++)
            dp[i][j] = max(dp[i][j], dp[i - 1][j - weight[i-1] * k] + value[i-1] * k);

算法2:第一次优化。

0/1背包 二维dp 类似,当前背包容量为 i 时所得最大价值,必不小于背包容量为 i - 1 时的最大价值,故先令此时背包容量的最大价值为 dp[ i - 1 ][ j ],再判断是否能放的下每个不同的物品,如果能放下,则比较后取较大的值。

代码:

for (int i = 1; i <= n; i++)
	for (int j = 0; j <= c; j++) {
		dp[i][j] = dp[i - 1][j];// 把上一行复制过来
		if (j >= weight[i - 1]) dp[i][j] = max(dp[i][j], dp[i][j - weight[i - 1]] + value[i - 1]);// 从左到右更新
	}

算法2:第二次优化。

0/1背包 一维dp 类似,但是此处是顺序遍历。

对于完全背包,由于每种物品可以取无限次,我们希望每个物品能够被重复考虑。因此,我们采用正序遍历背包容量的方式(即从 weight [ i ] c)。这样,在更新 dp [ j ] 的时候,dp[ j - weight [ i ] ] 总是表示未选择当前物品 i 时的最大价值,因此当前物品可以被多次加入背包中,只要不超过背包容量。

因为顺序从小到大考虑,已经让每个物品被重复多次的考虑了(dp [ i , j - weight ] + value [ i ] 已经多次重复考虑计算之前的物品,顺序时,只要有能放入的空间,就放入物品)。

代码:

for (int i = 1; i <= n; i++)
	for (int j = weight[i - 1]; j <= c; j++)
		dp1[j] = max(dp1[j], dp1[j - weight[i - 1]] + value[i - 1]);

完整代码:

#include<iostream>
#include<stdlib.h>

using namespace std;

int main() {
	int weight[4] = { 3,5,2,8 }, value[4] = { 4,6,1,9 }, dp[4 + 1][20 + 1],dp1[20 + 1];// dp对应方法12,dp1对应方法3

	//memset(dp, 0, sizeof(dp));// 初始化dp(方法12)
	memset(dp1, 0, sizeof(dp1));// 初始化dp1(方法3)

	int n = 4, c = 20;// 物品个数n,背包容量c
/*
	// 方法1
	for (int i = 1; i <= n; i++)
		for (int j = 0; j <= c; j++)
			for (int k = 0; k * weight[i-1] <= j; k++)	
				dp[i][j] = max(dp[i][j], dp[i - 1][j - weight[i-1] * k] + value[i-1] * k);
*/	
/*
	// 方法2 第一次优化
	for (int i = 1; i <= n; i++)
		for (int j = 0; j <= c; j++) {
			dp[i][j] = dp[i - 1][j];// 把上一行复制过来
			if (j >= weight[i - 1]) dp[i][j] = max(dp[i][j], dp[i][j - weight[i - 1]] + value[i - 1]);// 从左到右更新
		}
*/

	// 方法3 第二次优化
	for (int i = 1; i <= n; i++)
		for (int j = weight[i - 1]; j <= c; j++)
			dp1[j] = max(dp1[j], dp1[j - weight[i - 1]] + value[i - 1]);

	cout << dp1[c] << endl;
	//cout << dp[n][c] << endl;
	return 0;
}

  • 6
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 多重背包问题是指在给定容量和物品的价值和重量的情况下,如何最大限度地装入物品,使得总价值最大化的问题。它的模板是:给定N种物品和一个容量为V的背包,每种物品有无限件可用,每件物品的重量是w[i],其价值是v[i]。求解将哪些物品装入背包可使价值总和最大。 ### 回答2: 多重背包问题是一个经典的组合优化问题,它是在0/1背包问题的基础上进行了扩展。在多重背包问题中,每个物品可以被选择的次数不再是1次,而是有一个确定的上限k次(k>1)。我们需要选择一些物品放入背包中,使得它们的总体积不超过背包的容量,并且使得它们的总价值最大化。 要解决多重背包问题,可以使用动态规划的方法。首先,我们定义一个二维数组dp[i][j],其中i表示前i个物品,j表示背包的容量。dp[i][j]表示当只考虑前i个物品、背包容量为j时,能够获取的最大价值。然后,我们可以使用如下的状态转移方程来计算dp[i][j]的值: dp[i][j] = max(dp[i-1][j], dp[i-1][j-v[i]]+w[i], dp[i-1][j-2v[i]]+2w[i], ..., dp[i-1][j-kv[i]]+kw[i]) 其中,v[i]表示第i个物品的体积,w[i]表示第i个物品的价值,k表示第i个物品的可选次数。上述状态转移方程的意义是,我们可以选择不取第i个物品,或者分别取1次、2次、...、k次第i个物品,选择这些情况下的最大价值。 最后,我们可以通过遍历所有的物品和背包容量,计算出dp[n][m],其中n表示物品的个数,m表示背包的容量。dp[n][m]即为问题的解,表示只考虑前n个物品、背包容量为m时能够获取的最大价值。 综上所述,多重背包问题的解决方法是利用动态规划,通过定义状态转移方程和计算数组dp的值,找到问题的最优解。希望以上介绍对您有所帮助。 ### 回答3: 多重背包问题是常见的背包问题之一,与0-1背包问题完全背包问题类似,但有一些区别。 在多重背包问题中,给定n个物品和一个容量为V的背包,每个物品有两个属性:重量w和价值v。同时,每个物品还有对应的个数限制c,表示该物品的数量最多可以选择c次。 我们需要选择物品放入背包,使得背包的总容量不超过V,同时物品的总价值最大。 多重背包问题可以用动态规划来解决。 我们可以定义一个二维数组dp,其中dp[i][j]表示前i个物品中选择若干个物品放入容量为j的背包时的最大价值。 根据多重背包问题的特点,我们需要对每个物品的个数进行遍历,并依次判断放入背包的个数是否超过c。 具体的状态转移方程为: dp[i][j] = max(dp[i-1][j-k*w[i]] + k*v[i]),其中0 <= k <= min(c[i], j/w[i]) 最后,需要注意的是多重背包问题的时间复杂度较高,为O(N*V*∑(c[i])),其中N是物品的数量,V是背包的容量,∑(c[i])表示物品的个数限制的总和。 总结而言,多重背包问题是在0-1背包问题完全背包问题基础上的一种更复杂的情况,需要对每个物品的个数进行遍历和判断,采用动态规划求解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值