1、红黑树的性质
1. 每个结点不是红色就是黑色
2. 根节点是黑色的
3. 如果一个节点是红色的,则它的两个孩子结点是黑色的
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点
5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
2、红黑树的节点
相比于AVL树的“平衡因子”,这里的“平衡因子”是每个树的颜色分别为:黑色与红色。
enum Colour
{
RED,
BLACK
};
template<class K, class V>
struct RBTreeNode
{
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _parent;
pair<K, V> _kv;
Colour _col;
RBTreeNode(const pair<K, V>& kv)
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _kv(kv)
,_col(RED)//枚举
{}
};
3、红黑树的插入
红黑树是在以搜索二叉树的基础构建的,所以插入规则与搜索二叉树一样,小于节点的走左边,大于节点的走右边。
但是在插入时,要依靠红黑树的性质来进行平衡,以防出现搜索二叉树的极端情况。
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_col = BLACK;
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(kv); // 红色的
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
}
3.1、红黑树的平衡
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何
性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连
在一起的红色节点。
所以我们进入旋转前的大前提是p存在并且p为红色
3.1.1以p为g的左节点来分析:
情况一:
我们看叔叔(u)这个节点:
1、如果u存在且为红色我们需要将p与u节点的颜色改为黑色,并且将g的节点改为红色。如果g上面还有节点则继续向上调整
2、但是当我们调整完成后如果g节点为根节点,那么就需要特殊处理再将其改为黑色!
if (uncle && uncle->_col == RED)
{
// 变色
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续往上处理
cur = grandfather;
parent = cur->_parent;
}
当叔叔不存在且叔叔为黑色时:
情况二:
这是我们要以g为旋转点进行右旋转(右旋转与AVL树种的旋转构思相同,如有不了解,请移步上篇文章!)
//旋转
RotateR(grandfather);
//变色
parent->_col = BLACK;
grandfather->_col = RED;
当cur在p的左侧如下图:
情况三:
则我们需要先以p为旋转点进行左旋转,然后再以g为旋转点进行右旋转即可。
//旋转
RotateL(parent);
RotateR(grandfather);
//变色
cur->_col = BLACK;
grandfather->_col = RED;
3.1.2 p为g的左节点
情况四:
与情况一相同。
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续往上处理
cur = grandfather;
parent = cur->_parent;
情况五:
以g为旋转点进行左旋转
//旋转
RotateL(grandfather);
//变色
parent->_col = BLACK;
grandfather->_col = RED;
情况六:
与情况三相似,
1、先以p为旋转点进行右旋转
2、再以g为旋转点进行左旋转
//旋转
RotateR(parent);
RotateL(grandfather);
//变色
cur->_col = BLACK;
grandfather->_col = RED;
根据上面的情况来编写出平衡的整合:
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
if (parent == grandfather->_left)
{
Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else
{
if (cur == parent->_left)
{
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else
{
Node* uncle = grandfather->_left;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else
{
if (cur == parent->_right)
{
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
我么可以在末尾处插入这行代码,为了处理情况一种g节点为根节点的特殊情况。
检查红黑树的平衡
我们可以通过红黑树的性质来进行检查。
1、红色节点下面必须是黑色节点,所以一个红黑树中,是没有连续的红色节点。
if (cur->_col == RED && cur->_parent->_col == RED)
{
cout << cur->_kv.first << "存在连续的红色节点" << endl;
return false;
}
2、每条路径的黑色节点是相同的。
我们可以先保存一条路径的黑色节点:
int refBlackNum = 0;
Node* cur = _root;
while (cur)
{
if(cur->_col == BLACK)
refBlackNum++;
cur = cur->_left;
}
然后再遍历每一条路径与之相对比,判断是否相等。
if (cur == nullptr)
{
if (refBlackNum != blackNum)
{
cout << "黑色节点的数量不相等" << endl;
return false;
}
//cout << blackNum << endl;
return true;
}
平衡的代码整合:
bool IsBalance()
{
if (_root && _root->_col == RED)
return false;
int refBlackNum = 0;
Node* cur = _root;
while (cur)
{
if(cur->_col == BLACK)
refBlackNum++;
cur = cur->_left;
}
return Check(_root, 0, refBlackNum);
}
bool Check(Node* cur, int blackNum, int refBlackNum)
{
if (cur == nullptr)
{
if (refBlackNum != blackNum)
{
cout << "黑色节点的数量不相等" << endl;
return false;
}
//cout << blackNum << endl;
return true;
}
if (cur->_col == RED && cur->_parent->_col == RED)
{
cout << cur->_kv.first << "存在连续的红色节点" << endl;
return false;
}
if (cur->_col == BLACK)
++blackNum;
return Check(cur->_left, blackNum, refBlackNum)
&& Check(cur->_right, blackNum, refBlackNum);
}