【c++学习】红黑树的模拟

1、红黑树的性质

1. 每个结点不是红色就是黑色
2. 根节点是黑色的
3. 如果一个节点是红色的,则它的两个孩子结点是黑色的
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点
5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

2、红黑树的节点

相比于AVL树的“平衡因子”,这里的“平衡因子”是每个树的颜色分别为:黑色与红色。

enum Colour
{
	RED,
	BLACK
};
template<class K, class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	pair<K, V> _kv;
	Colour _col;

	RBTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		,_col(RED)//枚举
	{}
};

3、红黑树的插入

红黑树是在以搜索二叉树的基础构建的,所以插入规则与搜索二叉树一样,小于节点的走左边,大于节点的走右边。
但是在插入时,要依靠红黑树的性质来进行平衡,以防出现搜索二叉树的极端情况。

bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv); // 红色的
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;
	}

3.1、红黑树的平衡

因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何
性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连
在一起的红色节点。
所以我们进入旋转前的大前提是p存在并且p为红色

3.1.1以p为g的左节点来分析:

情况一:
在这里插入图片描述
我们看叔叔(u)这个节点:
1、如果u存在且为红色我们需要将p与u节点的颜色改为黑色,并且将g的节点改为红色。如果g上面还有节点则继续向上调整
2、但是当我们调整完成后如果g节点为根节点,那么就需要特殊处理再将其改为黑色!

if (uncle && uncle->_col == RED)
				{
					// 变色
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					// 继续往上处理
					cur = grandfather;
					parent = cur->_parent;
				}

当叔叔不存在且叔叔为黑色时:
情况二:
在这里插入图片描述
这是我们要以g为旋转点进行右旋转(右旋转与AVL树种的旋转构思相同,如有不了解,请移步上篇文章!)

						//旋转
						RotateR(grandfather);
						//变色
						parent->_col = BLACK;
						grandfather->_col = RED;

当cur在p的左侧如下图:
情况三:
在这里插入图片描述
则我们需要先以p为旋转点进行左旋转,然后再以g为旋转点进行右旋转即可。

		//旋转
		RotateL(parent);
		RotateR(grandfather);
		//变色
		cur->_col = BLACK;
		grandfather->_col = RED;

3.1.2 p为g的左节点

情况四:

在这里插入图片描述
与情况一相同。

parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					// 继续往上处理
					cur = grandfather;
					parent = cur->_parent;

情况五:
在这里插入图片描述
以g为旋转点进行左旋转

//旋转
RotateL(grandfather);
//变色
parent->_col = BLACK;
grandfather->_col = RED;

情况六:
在这里插入图片描述
与情况三相似,
1、先以p为旋转点进行右旋转
2、再以g为旋转点进行左旋转

//旋转
RotateR(parent);
RotateL(grandfather);
//变色
cur->_col = BLACK;
grandfather->_col = RED;

根据上面的情况来编写出平衡的整合:

		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;
			if (parent == grandfather->_left)
			{
				Node* uncle = grandfather->_right;
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					cur = grandfather;
					parent = cur->_parent;
				}
				else
				{
					if (cur == parent->_left)
					{
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;
				} 
			}
			else
			{
				Node* uncle = grandfather->_left;
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					cur = grandfather;
					parent = cur->_parent;
				}
				else
				{
					if (cur == parent->_right)
					{
						RotateL(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;
				}
			}
		}

_root->_col = BLACK;
我么可以在末尾处插入这行代码,为了处理情况一种g节点为根节点的特殊情况。

检查红黑树的平衡

我们可以通过红黑树的性质来进行检查。
1、红色节点下面必须是黑色节点,所以一个红黑树中,是没有连续的红色节点。

if (cur->_col == RED && cur->_parent->_col == RED)
		{
			cout << cur->_kv.first << "存在连续的红色节点" << endl;
			return false;
		}

2、每条路径的黑色节点是相同的。
我们可以先保存一条路径的黑色节点:

int refBlackNum = 0;
		Node* cur = _root;
		while (cur)
		{
			if(cur->_col == BLACK)
				refBlackNum++;

			cur = cur->_left;
		}

然后再遍历每一条路径与之相对比,判断是否相等。

if (cur == nullptr)
		{
			if (refBlackNum != blackNum)
			{
				cout << "黑色节点的数量不相等" << endl;
				return false;
			}

			//cout << blackNum << endl;
			return true;
		}

平衡的代码整合:

bool IsBalance()
	{
		if (_root && _root->_col == RED)
			return false;

		int refBlackNum = 0;
		Node* cur = _root;
		while (cur)
		{
			if(cur->_col == BLACK)
				refBlackNum++;

			cur = cur->_left;
		}

		return Check(_root, 0, refBlackNum);
	}
bool Check(Node* cur, int blackNum, int refBlackNum)
	{
		if (cur == nullptr)
		{
			if (refBlackNum != blackNum)
			{
				cout << "黑色节点的数量不相等" << endl;
				return false;
			}

			//cout << blackNum << endl;
			return true;
		}

		if (cur->_col == RED && cur->_parent->_col == RED)
		{
			cout << cur->_kv.first << "存在连续的红色节点" << endl;
			return false;
		}

		if (cur->_col == BLACK)
			++blackNum;
		
		return Check(cur->_left, blackNum, refBlackNum)
			&& Check(cur->_right, blackNum, refBlackNum);
	}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值