💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于VMD-CNN-GRU的风电功率预测研究
一、研究背景与意义
风电作为清洁、可再生的能源,在全球能源结构中的重要性日益凸显。然而,风电功率的预测一直是一个具有挑战性的任务,因为其受风速、风向、温度、湿度等多种气象因素的影响,且这些因素之间具有复杂的非线性关系。准确预测风电功率对于电力系统的稳定运行、风电并网的优化调度以及风电场的经济效益具有重要意义。基于VMD-CNN-GRU的风电功率预测模型结合了变分模态分解(VMD)、卷积神经网络(CNN)和门控循环单元(GRU)的优势,旨在提高风电功率预测的精度和鲁棒性。
二、模型结构与原理
1. VMD层
- 功能:将原始风电功率时间序列输入到VMD层,通过VMD算法将信号分解为多个固有模态函数(IMFs)。每个IMF代表信号中的一种独特频率或时间尺度的振动模式,有助于提取原始数据中的有用信息和特征。
- 优势:VMD通过对模态分量的带宽和中心频率进行约束,确保分解得到的IMFs在频域上有良好的分离性和紧凑性,为后续处理提供高质量的数据基础。
2. CNN层
- 功能:将VMD层输出的每个IMF作为CNN的输入,通过卷积操作、激活函数和池化操作提取IMFs的局部特征。CNN特别擅长处理具有网格结构的数据,能够有效地提取输入数据的空间层次结构。
- 优势:CNN层能够生成对预测有用的特征表示,为后续的时间序列分析提供关键信息。
3. GRU层
- 功能:将CNN层输出的特征向量输入到GRU层,通过GRU的循环连接结构和门控机制捕获时间序列数据中的长期依赖关系。GRU通过更新门和重置门控制信息的流动,特别适用于处理序列数据。
- 优势:GRU层能够充分利用时间序列数据的特性,提高预测的准确性。
4. 输出层
- 功能:根据具体任务的需求,输出层可以采用不同的结构。在风电功率预测任务中,输出层通常是一个全连接层,用于输出预测结果。
- 输出:风电功率的预测值。
三、多变量输入单步预测
在基于VMD-CNN-GRU的风电功率预测研究中,可以采用多变量输入以进一步提高预测精度。这些多变量可能包括风速、风向、温度、湿度、气压等气象数据以及历史风电功率数据等。
- 数据预处理:对多变量输入数据进行清洗、缺失值处理、归一化等预处理步骤,以确保数据的一致性和可比性。
- 模型训练:将预处理后的多变量输入数据输入到VMD-CNN-GRU模型中进行训练。模型在训练过程中会自动学习输入变量与风电功率之间的关系,并优化其预测性能。
- 预测输出:在模型训练完成后,可以使用新的多变量输入数据来预测未来的风电功率。由于模型已经学习到了输入变量与风电功率之间的复杂关系,因此能够输出较为准确的预测结果。
四、研究展望
随着深度学习技术的不断发展和完善,基于VMD-CNN-GRU的风电功率预测模型将具有更广阔的应用前景。未来的研究可以进一步探索模型的优化算法、超参数调整策略以及与其他先进技术的结合应用,以提高模型的预测精度和泛化能力。同时,随着大数据和云计算等技术的普及和应用,风电功率预测将更加注重实时性和准确性,为电力系统的稳定运行和风电并网的优化调度提供更加有力的支持。
📚2 运行结果
部分代码:
% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74 0.8 0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]
%
% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75 0.74 0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87 0.15 712.77 684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】
%
% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75 0.74 0.87 0.15 716.94 712.77
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72 0.87 0.08 742.81 751.3】
function res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
for i = 1:num_samples
h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
res{i,1}= h1;
h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
res{i,2} = h2;
end
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.
[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.
[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.
[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取