CEC2014:多种经典智能优化算法跑cec2014测试集

本期我们将介绍多种经典智能算法跑CEC2014,这些算法被广泛研究,包括引用超过五千次的高被引算法(PSO,GSA,GWO,WOA)和最近提出来的高性能算法(AVOA,GTO,DBO,SO),具体如下:

第一,粒子群优化算法(Particle Swarm Optimization, PSO) 是James Kennedy和Russell Eberhart在1995年受到鸟群觅食行为的规律性启发提出的算法。第二,引力搜索算法(Gravitational Search Algorithm,GSA)是Esmat Rashedi等人在2009年基于万有引力定律和粒子间相互作用提出的算法。第三,灰狼优化算法(Grey Wolf Optimizer,GWO)是 Mirjalili 等人在2014年到了灰狼捕食猎物活动的启发提出来的一种群智能优化算法。第四,鲸鱼优化算法 (Whale Optimization Algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提出的一种新的群体智能优化算法。第五,非洲秃鹫优化算法(African Vultures Optimization Algorithm,AVOA)由Benyamin Abdollahzadeh等人受非洲秃鹫的觅食和导航行为启发于2021年提出,该算法速度快,求解精度高,广泛应用于单目标优化。人工大猩猩部队优化算法(Artificial gorilla troops optimizer,GTO),是于2021年提出的一种新型智能优化算法,该算法主要通过,模拟大猩猩全体的生活行为来进行寻优,具有寻优能力强,收敛速度快等特点。第七,蜣螂优化算法(Dung beetle optimizer,DBO)由Jiankai Xue和Bo Shen于2022年提出,该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁殖行为的启发所得。 第八,蛇优化算法(Snake Optimizer,SO)由Fatma A. Hashim和Abdelazim G. Hussien于2022年提出,该算法模拟了蛇的觅食和繁殖行为。

CEC2014函数细节如下:

​部分主函数代码和运行结果如下:

​需要代码私信

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值