一、麻雀搜索算法
麻雀搜索算法(sparrow search algorithm,SSA)由Jiankai Xue等人于2020年提出,该算法是根据麻雀觅食并逃避捕食者的行为而提出的群智能优化算法。SSA 主要是受麻雀的觅食行为和反捕食行为的启发而提出的。该算法比较新颖,具有寻优能力强,收敛速度快的优点。麻雀群觅食过程也是发现者-跟随者模型的一种,同时还叠加了侦查预警机制。麻雀中找到食物较好的个体作为发现者,其他个体作为跟随者,同时种群中选取一定比例的个体进行侦查预警,如果发现危险则放弃食物,安全第一。
二、CEC2014
CEC2014测试集共有30个单目标测试函数,每个测试函数可选择维度分别为10D、30D、50D、100D。
三、SSA求解CEC2014
将麻雀搜索算法用于求解CEC2014,测试函数维度为30(可根据自己需求更改),种群大小为100,最大迭代次数为5000,部分实验结果如下:
F2
SSA求得值:200.7589
F12
SSA求得值:1200.4087
F22
SSA求得值:2370.1816
SSA在F2和F12上能够快速求得理论最优值,在F22上求得的值与理论值较为接近,增大迭代次数效果更佳,由此可知SSA在CEC2014上具有一定的竞争优势,潜力十足。