摘要
低样本计数器估算选定类别对象的数量,即使在图像中只有少量或没有标注样本的情况下。目前最先进的技术通过对象位置密度图的总和来估算总数量,但这种方法无法提供单个对象的位置和大小,这对于许多应用来说至关重要。
基于检测的计数器可以解决这个问题,但在总数精度上表现不佳。
此外,这两种方法在存在其他类别对象时往往会因许多误报而高估数量。
我们提出了DAVE,一种基于“检测和验证”范式的低样本计数器,通过首先生成高召回率的检测集,然后验证检测结果以识别并删除异常值,从而避免上述问题。
这种方法共同提高了召回率和精度,导致更准确的计数。
DAVE在总计数平均绝对误差(MAE)方面比最先进的基于密度的计数器高出20%,在检测质量上比最新的基于检测的计数器高出20%,并在零样本以及基于文本提示的计数方面设立了新的行业标准。
DAVE |
LOCA |
SAFECount |
CountTR |