机器学习第二周周报

一、Transforms

1.Transforms的结构与用法

在这里插入图片描述

from PIL import Image
from torchvision import transforms

img = image.open(img.path)

tensor_trans = transforms.ToTensor()
tensor_img = tensor.trans(img)

在这里插入图片描述

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

img = image.open(img.path)

writer = SummaryWriter("logs")

tensor_trans = transforms.ToTensor()
tensor_img = tensor.trans(img)

writer.add_image("Tensor_img",tensor_img)

writer.close()

2.常见的Transforms

(1)关注点

  • 输入
  • 输出
  • 作用

(2)代码

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

img = image.open(img.path)

writer = SummaryWriter("logs")

# ToTensor
tensor_trans = transforms.ToTensor()
tensor_img = tensor.trans(img)
writer.add_image("Tensor_img",tensor_img)

# Normalize
trans_more = transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image("Normalize",img_norm,2)

# Resize
print(img.size)
trans_resize = transforms.Resize((512,512))
# img PIL -> resize -> img_resize PIL
img_resize = trans_reszie(img)
# img_resize PIL -> totensor ->img_resize tensor
img_resize = trans_totensor(img_resize)
writer.add_image("Resize",img_resize,0)
print(img_resize)

# Compose -resize -2
trans_reszie_2 = transforms.Resize(512)
# PIL -> PIL -> tensor
trans_compose = transforms.Compose([trans_resize_2,trans_totensor])
img_resize_2 = trans_compose(img)
writer.add_image("Resize",img_resize_2,1)

#RandomCrop
trans_random = transforms.RandomCrop(500,1000)
trans_compose_2 = transforms_Compose([trans_random,trans_totensor])
for i in range(10):
	img_crop = trans_Compose_2(img)
	writer.add_image("RandomCrop",img_crop,i)

writer.close()
class Person:
	def __call__(self,name):
		print("__call__" + "hello" + name)

	def hello(self,name):
		print("hello" + name)

person = Person()
person("zhangsan")
person.hello("lisi")

二、Google Colab

1.What is Colab?

Colab, or “Colaboratory”, allows you to write and execute Python in your
browser, with

  • Zero configuration required
  • Free access to GPUs
  • Easy sharing

2.Useful Linux Commands (in Colab)

  • ls : List all files in the current directory
  • ls -l : List all files in the current directory with more detail
  • pwd : Output the working directory
  • mkdir <dirname>: Create a directory <dirname>
  • cd <dirname> : Move to directory <dirname>
  • gdown : Download files from google drive
  • wget : Download files from the internet
  • python <python_file>: Executes a python file

三、深度学习

1.Three Steps for Deep Learning

  • Step 1: Neural Network
  • Step 2: goodness of function
  • Step 3: pick the best function

2.Neural Network

Different connection leads to different network structures.

Network parameter 𝜃: all the weights and biases in the “neurons”

3.goodness of function

在这里插入图片描述

4.pick the best function

在这里插入图片描述
在这里插入图片描述

四、Backpropagation

To compute the gradients efficiently, we use backpropagation.

1.Forward pass

Compute 𝜕𝑧 / 𝜕𝑤 for all parameters
在这里插入图片描述
在这里插入图片描述

2.Backward pass

Compute 𝜕𝐶 / 𝜕𝑧 for all activation function inputs z
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
𝜎′ (z) is a constant because z is
already determined in the forward pass.

3.Summary

在这里插入图片描述

五、预测神奇宝贝Pokemon

1.Step 1: Model

y = b +xcp
(w and b are parameters (can be any value))
Linear model: y = b + Σwixi

2.Step 2: Goodness of Function

在这里插入图片描述
在这里插入图片描述

3.Step 3: Best Function

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
最终形成一下等高线图
在这里插入图片描述

4.result

使用训练集和测试集的平均误差来验证模型:
在这里插入图片描述

5.Generalization

优化上述模型:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
A more complex model does not always lead to better performance on testing data.
This is Overfitting. => Select suitable model

6.考虑其他的因素

我们需要考虑其他的属性是否会影响最终的结果。

7.重新定义function

(1)Back to step 1: Redesign the Model

在这里插入图片描述

(2)Back to step 2: Regularization

在这里插入图片描述
在这里插入图片描述

  • Training error: larger𝜆, considering the training error less
  • We prefer smooth function, but don’t be too smooth.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值