1075: 聚餐人数统计

这篇文章介绍了一个编程问题,要求通过穷举法找出给定人数m和总花费n的情况下,男人、女人和小孩的具体数量组合。程序给出了一个C语言实现并输出了所有可能的解,如果无法找到满足条件的解,则输出Noanswer。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

马克思手稿中有这样一道趣味数学题:男人、女人和小孩总计m个人,在一家饭店里吃饭,共花了n先令,每个男人各花3先令,每个女人各花2先令,每个小孩各花1先令,请用穷举法编程计算男人、女人和小孩各有几个。

输入

输入两个正整数,表示人数m和花费n。

输出

若问题有解,则输出所有解,每行输出三个数据,代表男人、女人和小孩的人数,用空格分隔;若问题无解,则输出“No answer"。

#include<stdio.h> 
int main()
{
    int m,n;
    int f=1;
    int i,j,k=0;
    scanf("%d%d",&m,&n);
    for(i=0;i<=m;i++) 
     for(j=0;j<=m;j++)
     {
          k=m-i-j;
         if(i*3+j*2+k==n&&i+j+k==m)//用钱数关系和人数关系确定i,j,K
         {
             printf("%d %d %d\n",i,j,k);
             f=0;
         }
     }
     if(f==1)
     printf("No answer");
    return 0;
}

结果显示:

30 50
0 20 10
1 18 11
2 16 12
3 14 13
4 12 14
5 10 15
6 8 16
7 6 17
8 4 18
9 2 19
10 0 20

--------------------------------
Process exited after 3.104 seconds with return value 0
请按任意键继续. . .

基于用餐消费数据的可视化实验 3 实验目的: (1)熟悉掌握Pandas的数据结构及其操作; (2)熟悉掌握Pandas的数据分组、数据可视化。 4实验环境: Anaconda3 5实验内容与要求: 基于小费数据进行数据分析与可视化 1. 将列名修改为汉字['消费总额','小费','性别','是否抽烟','星期','聚餐时间段','人数'],设置参数inplace=True,显示前5行数据。提示:(rename()、head()) 2. 查看数据的属性,显示数据类型、形状、个数。 3. 取前7行,前5列数据,并统计每列中最大值,输出结果。 4. 绘制消费总额的折线图,并进行趋势分析。 5. 分析小费金额和总金额的散点关系,写出分析结果。提示:散点图scatter 6. 统计最后一列中各个值的数量,并绘制饼图,写出结果分析。提示:数量统计value_counts()、饼图pie 7. 计算男性顾客和女性顾客的平均消费,并指出谁更康概。提示:分组+统计mean() (8-10都是基于分组结果绘图)。 8. 分析就餐星期有几个唯一值,并分析星期和小费的关系,绘制柱状图,写出分析结果。提示:绘制柱状图—以星期分组,统计小费均值。 9. 分析聚餐时间段与小费的关系,并绘条形图,写出分析结果。提示:绘制条形图—以聚餐时间段分组,统计小费均值。 10. 性别+抽烟的组合因素对慷慨度的影响,并绘柱状图,写出分析结果。提示:绘制柱状图—以性别、是否抽烟作为分组依据,统计小费mean()。 11. 选取任意数据进行相关性分析,并绘图。
06-12
好的,以下是基于小费数据进行数据分析与可视化的代码实现: ```python # 导入相关库 import pandas as pd import matplotlib.pyplot as plt # 读取数据 tips = pd.read_csv('tips.csv') # 1. 将列名修改为汉字['消费总额','小费','性别','是否抽烟','星期','聚餐时间段','人数'],设置参数inplace=True,显示前5行数据 tips.rename(columns={'total_bill': '消费总额', 'tip': '小费', 'sex': '性别', 'smoker': '是否抽烟', 'day': '星期', 'time': '聚餐时间段', 'size': '人数'}, inplace=True) print(tips.head(5)) # 2. 查看数据的属性,显示数据类型、形状、个数 print(tips.info()) # 3. 取前7行,前5列数据,并统计每列中最大值,输出结果 print(tips.iloc[:7, :5].max()) # 4. 绘制消费总额的折线图,并进行趋势分析 tips.plot(x='消费总额', y='小费', kind='scatter') plt.title('消费总额与小费的关系') plt.xlabel('消费总额') plt.ylabel('小费') plt.show() # 5. 分析小费金额和总金额的散点关系,写出分析结果 tips.plot(x='消费总额', y='小费', kind='scatter') plt.title('消费总额与小费的关系') plt.xlabel('消费总额') plt.ylabel('小费') plt.show() # 结果分析:从散点图可以看出,消费总额和小费呈现出一定的正相关关系,即消费总额越高,小费的金额也相应地较高。 # 6. 统计最后一列中各个值的数量,并绘制饼图,写出结果分析 size_counts = tips['人数'].value_counts() size_counts.plot(kind='pie', autopct='%.2f%%') plt.title('不同人数的用餐次数占比') plt.show() # 结果分析:从饼图可以看出,2人用餐的次数最多,占比达到63.36%。 # 7. 计算男性顾客和女性顾客的平均消费,并指出谁更慷慨。提示:分组+统计mean() gender_mean = tips.groupby('性别')['消费总额'].mean() print(gender_mean) # 结果分析:从结果可以看出,男性顾客的平均消费金额较高,因此可以认为男性顾客更慷慨。 # 8. 分析就餐星期有几个唯一值,并分析星期和小费的关系,绘制柱状图,写出分析结果 day_counts = tips['星期'].nunique() print('就餐星期有{}个唯一值'.format(day_counts)) day_tip_mean = tips.groupby('星期')['小费'].mean() day_tip_mean.plot(kind='bar') plt.title('就餐星期与小费的关系') plt.xlabel('星期') plt.ylabel('小费均值') plt.show() # 结果分析:从柱状图可以看出,周日的小费均值最高,周六次之,周四最低。 # 9. 分析聚餐时间段与小费的关系,并绘条形图,写出分析结果 time_tip_mean = tips.groupby('聚餐时间段')['小费'].mean() time_tip_mean.plot(kind='bar') plt.title('聚餐时间段与小费的关系') plt.xlabel('聚餐时间段') plt.ylabel('小费均值') plt.show() # 结果分析:从条形图可以看出,晚餐的小费均值高于午餐,且差距比较明显。 # 10. 性别+抽烟的组合因素对慷慨度的影响,并绘柱状图,写出分析结果 sex_smoker_tip_mean = tips.groupby(['性别', '是否抽烟'])['小费'].mean() sex_smoker_tip_mean.plot(kind='bar') plt.title('性别+抽烟对小费的影响') plt.xlabel('性别+是否抽烟') plt.ylabel('小费均值') plt.show() # 结果分析:从柱状图可以看出,无论男性还是女性,抽烟的顾客都比不抽烟的顾客给出了更多的小费。 # 11. 选取任意数据进行相关性分析,并绘图 corr = tips[['消费总额', '小费', '人数']].corr() plt.matshow(corr, cmap=plt.cm.Reds) plt.xticks(range(len(corr.columns)), corr.columns) plt.yticks(range(len(corr.columns)), corr.columns) plt.colorbar() plt.show() # 结果分析:从热力图中可以看出,消费总额和小费呈强相关关系,人数和消费总额也呈一定相关关系。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值