[NOIP2001 提高组] 数的划分

该文章是关于NOIP2001提高组的一道编程题目,要求将整数n分成k份,不考虑顺序的不同。给定n和k的范围,问题通过深度优先搜索(DFS)来解决,同时使用剪枝策略优化搜索过程。代码示例中展示了如何利用DFS和剪枝来计算不同分法的数量。
摘要由CSDN通过智能技术生成

[NOIP2001 提高组] 数的划分

题目描述

将整数 n n n 分成 k k k 份,且每份不能为空,任意两个方案不相同(不考虑顺序)。

例如: n = 7 n=7 n=7 k = 3 k=3 k=3,下面三种分法被认为是相同的。

1 , 1 , 5 1,1,5 1,1,5;
1 , 5 , 1 1,5,1 1,5,1;
5 , 1 , 1 5,1,1 5,1,1.

问有多少种不同的分法。

输入格式

n , k n,k n,k 6 < n ≤ 200 6<n \le 200 6<n200 2 ≤ k ≤ 6 2 \le k \le 6 2k6

输出格式

1 1 1 个整数,即不同的分法。

样例 #1

样例输入 #1

7 3

样例输出 #1

4

提示

四种分法为:
1 , 1 , 5 1,1,5 1,1,5;
1 , 2 , 4 1,2,4 1,2,4;
1 , 3 , 3 1,3,3 1,3,3;
2 , 2 , 3 2,2,3 2,2,3.

【题目来源】

NOIP 2001 提高组第二题

代码

#include <bits/stdc++.h>
using namespace std;
int n,m,s=0;
void dfs(int k,int ago){
	if (n==0) return;
	if (k==m){
		if (n>=ago) s++;
		return; 
	}
	for (int i=ago;i<=n/(m-k+1);i++){
		n-=i;
		dfs(k+1,i);
		n+=i;
	}
}
int main(){
	cin>>n>>m;
	dfs(1,1);
	cout<<s<<endl;
	return 0;
}

分析

标准dfs,考虑两个剪枝:
1.由于顺序不同,可以从小到大选,使dfs多一个参数,记录上一个选的数ago,从ago开始搜
2.上下界剪枝:由于从小到大,便使ago为下界,那么由于还要选m-k+1个数,所以上界为 n ( m − k + 1 ) n \over (m-k+1) (mk+1)n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值