[NOIP2001 提高组] 数的划分
题目描述
将整数 n n n 分成 k k k 份,且每份不能为空,任意两个方案不相同(不考虑顺序)。
例如: n = 7 n=7 n=7, k = 3 k=3 k=3,下面三种分法被认为是相同的。
1
,
1
,
5
1,1,5
1,1,5;
1
,
5
,
1
1,5,1
1,5,1;
5
,
1
,
1
5,1,1
5,1,1.
问有多少种不同的分法。
输入格式
n , k n,k n,k ( 6 < n ≤ 200 6<n \le 200 6<n≤200, 2 ≤ k ≤ 6 2 \le k \le 6 2≤k≤6)
输出格式
1 1 1 个整数,即不同的分法。
样例 #1
样例输入 #1
7 3
样例输出 #1
4
提示
四种分法为:
1
,
1
,
5
1,1,5
1,1,5;
1
,
2
,
4
1,2,4
1,2,4;
1
,
3
,
3
1,3,3
1,3,3;
2
,
2
,
3
2,2,3
2,2,3.
【题目来源】
NOIP 2001 提高组第二题
代码
#include <bits/stdc++.h>
using namespace std;
int n,m,s=0;
void dfs(int k,int ago){
if (n==0) return;
if (k==m){
if (n>=ago) s++;
return;
}
for (int i=ago;i<=n/(m-k+1);i++){
n-=i;
dfs(k+1,i);
n+=i;
}
}
int main(){
cin>>n>>m;
dfs(1,1);
cout<<s<<endl;
return 0;
}
分析
标准dfs,考虑两个剪枝:
1.由于顺序不同,可以从小到大选,使dfs多一个参数,记录上一个选的数ago,从ago开始搜
2.上下界剪枝:由于从小到大,便使ago为下界
,那么由于还要选m-k+1
个数,所以上界为
n
(
m
−
k
+
1
)
n \over (m-k+1)
(m−k+1)n