算法模型是如何实现人脸识别的

本文详细介绍了如何使用Python和Scikit-learn库实现人脸识别,包括数据采集、特征提取、模型训练(使用KNN算法)以及超参数优化的过程,最后展示了实际的人脸识别任务应用。
摘要由CSDN通过智能技术生成

本期分享的知识是用算法模型进行人脸识别。

- 人脸识别任务
    - 400张共计40个人的人脸照片。
    - 使用人脸照片作为样本的特征,人脸的名字作为标签数据。

第一步:录入人脸

这一步我们需要建立一个个人脸识别文档。

接下来录入人脸

#加载相关模块
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import pandas as pd




#随机抽选一个人脸的照片数据进行读取
import matplotlib.pylab as plt
img_arr = plt.imread('./datasets/faces/刘梅/3.bmp')
img_arr.shape #读取出来的人脸照片是一个三维的数组

plt.imshow(img_arr)

#过滤图片的颜色通道从而减少图片的特征维度
img_arr = img_arr[:,:,0]
img_arr.shape

plt.imshow(img_arr,cmap='gray')

以上我们只是读取了一个人脸。思考:如何对多个人脸做分类呢?

第二步:批量读取数据

import numpy as np
import os
feature = [] #保存特征数据
target = []  #保存标签数据
#获取每一个人名对应的文件夹名称,完整的图片路径 './datasets/faces/刘梅/3.bmp'
#listdir作用是可以将一个文件夹下所有文件的名称获取
names = os.listdir('./datasets/faces')
for name in names:
    if name != '.DS_Store':
        for index in range(10):#index的取值范围是0-9
            img_path = './datasets/faces/'+name+'/'+str(index)+'.bmp'
            #根据图片路径将图片的像素点数据进行读取
            img_arr = plt.imread(img_path)
            #过滤图片的颜色通道
            img_arr = img_arr[:,:,0] #img_arr的形状是(64,64)
            feature.append(img_arr)
            target.append(name)
        
feature = np.array(feature)
target = np.array(target)
feature.shape
 #(400,64,64)

此时的数据还是三维数据,需要把其改变为二维数据。(因为模型只接收二维形式的矩阵)#发
feature = feature.reshape((400,4096))4096为后二者相乘。

第三步:切分-找参数-建模

#数据集切分
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(feature,target,test_size=0.2,
                                                 random_state=2020)
#找寻模型最优的超参数
from sklearn.model_selection import cross_val_score
from sklearn.neighbors import KNeighborsClassifier

ks = np.linspace(3,150,num=50).astype('int')
scores = []
for k in ks:
    model = KNeighborsClassifier(n_neighbors=k)
    score = cross_val_score(model,x_train,y_train,cv=5).mean()
    scores.append(score)
scores = np.array(scores)
index = np.argmax(scores)
best_k = ks[index]

#建模
model = KNeighborsClassifier(n_neighbors=best_k)
model.fit(x_train,y_train)
model.score(x_test,y_test)

第四步:使用训练好的模型进行人脸识别任务

persons = x_test[10:15]
print('真实的名字:',y_test[10:15])
 
print('模型识别的人名:',model.predict(persons))

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bigdata产品狗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值