'''欧洲杯球队数据分析'''
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
#读取数据
df = pd.read_csv('E:\AI课程笔记\数据分析\Euro2012_stats.csv')
print(df.head(10))
os.path.join(os.get.cwd()) #获取当前工作目录
#数据基本信息
print(df.info()) #查看数据的基本信息
print(df.describe()) #查看数据的基本信息
#选取某一列
print(df["Goals"]) #选取某一列
print(df.Goals) #选取某一列
#选取多列
print(df[["Goals","Shots"]]) #选取多列
#选取某一行
print(df.iloc[1]) #选取某一行
#选取多行
print(df.iloc[[1,3,5]]) #选取多行
#选取某几行某几列
print(df.iloc[[1,3,5],[1,3]]) #选取某几行某几列
#数据维度
print(df.shape) #数据维度
print(df.shape[0]) #数据行数
print(df.shape[1]) #数据列数
print(df.index) #数据索引
print(df.columns) #数据列名
print(len(df.columns)) #数据列数
#将数据集中的列Team, Yellow Cards和Red Cards单独存为一个名叫discipline的数据框
discipline = df[["Team","Yellow Cards","Red Cards"]]
print(discipline.head(10)) #查看前10行
#对数据框discipline按照先Red Cards再Yellow Cards进行排序
discipline.sort_values(["Red Cards","Yellow Cards"],ascending=False,inplace=True)
print(discipline.head(10)) #查看前10行
#计算每个球队拿到的黄牌数的平均值
print(discipline["Yellow Cards"].mean()) #计算每个球队拿到的黄牌数的平均值
#先按照red cards进行降序,再按照yellow cards进行升序
print(discipline.sort_values(["Red Cards","Yellow Cards"],ascending=[False,True]))
#找到进球数Goals超过6的球队数据
print(df[df["Goals"]>6])
#选取以字母G开头的球队数据
print(df[df["Team"].str.startswith("G")])
#选取前7列
print(df.iloc[:,:7]) #选取前7列
#选取除了最后3列之外的全部列
print(df.iloc[:,:-3]) #选取除了最后3列之外的全部列
#找到英格兰,意大利,俄罗斯的射正率(特定行的特定列)
print(df[df["Team"].isin(["England","Italy","Russia"])]["Shooting Accuracy"])
数据分析实战③——欧洲杯球队数据分析
最新推荐文章于 2024-11-04 10:51:20 发布