数据分析实战③——欧洲杯球队数据分析

'''欧洲杯球队数据分析'''
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os 

#读取数据
df = pd.read_csv('E:\AI课程笔记\数据分析\Euro2012_stats.csv')
print(df.head(10))
os.path.join(os.get.cwd()) #获取当前工作目录 

#数据基本信息
print(df.info()) #查看数据的基本信息
print(df.describe()) #查看数据的基本信息

#选取某一列
print(df["Goals"]) #选取某一列
print(df.Goals) #选取某一列

#选取多列
print(df[["Goals","Shots"]]) #选取多列

#选取某一行
print(df.iloc[1]) #选取某一行

#选取多行
print(df.iloc[[1,3,5]]) #选取多行

#选取某几行某几列
print(df.iloc[[1,3,5],[1,3]]) #选取某几行某几列

#数据维度
print(df.shape) #数据维度
print(df.shape[0]) #数据行数
print(df.shape[1]) #数据列数
print(df.index) #数据索引
print(df.columns) #数据列名
print(len(df.columns)) #数据列数

#将数据集中的列Team, Yellow Cards和Red Cards单独存为一个名叫discipline的数据框
discipline = df[["Team","Yellow Cards","Red Cards"]]
print(discipline.head(10)) #查看前10行

#对数据框discipline按照先Red Cards再Yellow Cards进行排序
discipline.sort_values(["Red Cards","Yellow Cards"],ascending=False,inplace=True)
print(discipline.head(10)) #查看前10行

#计算每个球队拿到的黄牌数的平均值
print(discipline["Yellow Cards"].mean()) #计算每个球队拿到的黄牌数的平均值

#先按照red cards进行降序,再按照yellow cards进行升序
print(discipline.sort_values(["Red Cards","Yellow Cards"],ascending=[False,True]))

#找到进球数Goals超过6的球队数据
print(df[df["Goals"]>6]) 

#选取以字母G开头的球队数据
print(df[df["Team"].str.startswith("G")])

#选取前7列
print(df.iloc[:,:7]) #选取前7列

#选取除了最后3列之外的全部列
print(df.iloc[:,:-3]) #选取除了最后3列之外的全部列

#找到英格兰,意大利,俄罗斯的射正率(特定行的特定列)
print(df[df["Team"].isin(["England","Italy","Russia"])]["Shooting Accuracy"])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数字生命Allen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值