学习别人的学习笔记帮助自己学习。
原作者向南而行灬的学习链接:Robotics: Aerial Robotics(空中机器人)笔记(二):如何设计一架四旋翼无人机_无人机推力与电机转速成二次方关系-CSDN博客
基本的力学原理(Basic Mechanics)
一个四旋翼有四个电机来支持飞行器的重量,每个电机会旋转并产生一个向上推力,与此同时,电机的旋转需要克服阻力矩,所以我们需要观察推力和阻力矩这两个量与电机转速的关系。
如果我们绘制出推力与电机转速的关系图:
其中RPM:(Revolutions Per minute,转/分钟)
三条曲线:
黄线1thrust :代表推力,通过观察推力与转速的关系曲线,可以确定要求产生等于四分之一重量推力的转速,同时这需要克服相应的阻力矩。
蓝线drag:便是产生的阻力距,这是需要抵消的。
图中这个 电机可产生扭矩来克服前述的阻力矩,也就是图中这个(描述电机扭矩与转速的关系曲线)。这个特性曲线还没有了解,等待后续资料。(不是重点)
动力学与一维线性控制(Dynamics and 1-D Linear Control)
PD控制与PID控制入门
这一部分主要还是讨论在垂直方向上的运动,我们的目的就是让控制四旋翼机器人达到一个要求的垂直高度,也就是需要往上或往下位移一段距离 。
其中, 为微分增益(derivative gain), 为比例增益(proportional gain),称为前馈项(feedforward term)。当 和 都为正时,就能保证误差项能以指数的速度趋向于零。
比例增益其越高, 系统变得更有弹性和更有可能超调。 比如说当前状态是2,期望状态是4,误差是2,当前比例增益的话可能调节量是+1,那么状态就变成3,误差为1,如果增加比例增益,那么调节量可能变成+2,误差就为0,如果再增加比例增益,调节量可能变成+3,误差就变-1,也就是超调了。
微分增益越高,系统本质上是加大了缓冲。 我们可以粗略理解这一项为能量衰减率,如果为0, > 0,系统就处于不断振荡的状态。通过增加微分增益,我们可以让系统收敛得更平稳。但如果微分增益过大,那么系统就处于欠阻尼的状态,系统会收敛地比较慢,但不会振动得厉害。
在特殊情况下, 你可以考虑使用更复杂的版本的PD控制,也就是PID控制。比如在不知道系统的具体模型或存在某些未知的干扰因素时,可以引入一个额外的正比于误差积分的项:
虽然引入这一项会使微分方程变成三阶,使得求解变得困难,但是这会使误差项最终变成零。
————————————————
原文链接:https://blog.csdn.net/qq_42286607/article/details/123715466