1.坐标轴的概述:
坐标轴的结构相同,主要包括轴脊、刻度,其中刻度又可以细分为刻度线和刻度标签,刻度线又可以细分为主刻度线和次刻度线。坐标轴的各部分均是 matplolib类的对象:坐标轴是 axis.Axis 类的对象;轴脊是 spines.Spine类的对象;刻度是axis.Ticker 类的对象。此外,常用的x轴是一个axis.Xaxis类的对象,y轴是一个axis.Yaxis 类的对象。如前所述的所有类的对象均包含于Axes类对象中,可通过Axes类的一些属性分别获取,关于这些属性的介绍如下。
xaxis:获取x轴
yaxis:获取y轴
spines:获取包含全部轴脊的字典。
2.定制刻度的样式:
在 matplotlib 中,坐标轴的刻度有着周定的样式,例如,刻度线的方向是朝外的,刻度线的颜色是黑色等。pyplot 中可以使用 tick_params() 函数定制刻度的样式。tick-params()函数的语法格式如下:
tick_params(axis='both', **kwargs)
该函数的常用参数的含义如下。
axis:表示选择操作的轴,可以取值为'x'、'y'或'both',默认为"both'。
reset:若设为True,表示在处理其他参数之前均使用参数的默认值。
which:表示刻度的类型,可以取值为'major'、'minor'或'both',默认为'major'。
direction:表示刻度线的方向,可以取值为'in'、'out' 或'inout'。
length:表示刻度线的长度。
width:表示刻度线的宽度。
color:表示刻度线的颜色。
pad:表示刻度线与刻度标签的距离。
labelsize:表示刻度标签的字体大小。
labelcolor:表示刻度标签的颜色。
bottom,top,left,right:表示是否显示下方、上方、左侧、右侧的刻度线
labelbottom, labeltop, labelleft, labelright:表示是否显示下方、上方、左侧、右侧的刻度标签。
labelrotation:表示刻度标签旋转的角度。
3.隐藏轴脊:
坐标轴一般将轴脊作为刻度的载体,在轴脊上显示刻度标签和刻度线。 matplotlib 中的坐标系默认有 4个轴脊,分别是上轴脊、下轴脊、左轴脊和右轴脊、其中上轴脊和右轴脊并不经常使用,大多数情况下可以将上轴脊和右轴脊隐藏。
隐藏全部轴脊:使用 pyplot 的 axis()函数可以设置或获取一些坐标轴的属性,包括显示或隐藏坐标轴的轴脊。axis()函数的语法格式如下所示:
axis(option, **kwargs)
该函数的参数option可以接收布尔值或字符串。其中,布尔值True表示显示轴脊和刻度,False表示隐藏轴脊和刻度。
隐藏部分轴脊:matplotlib可以只隐藏坐标轴的部分轴脊,只需要访问spines属性获取相应的轴脊,之后调用set_color()方法将轴脊的颜色设为none即可。
需求一:绘制某股票一周内收盘价折线图
# 导入相关模块
import numpy as np
import matplotlib.pyplot as plt
# 0.设置中文黑体
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False
# 1.准备数据
x_data = np.arange(1,8,1)
y_data = [44.98, 45.02, 44.32, 41.05, 42.08, 42.08, 42.08] # 周末休市
# 2.创建画布和坐标系
fig = plt.figure()
ax = fig.add_axes((0.2, 0.2, 0.5, 0.5))
# 3.绘图
ax.plot(x_data, y_data, 'mo-', markersize=15)
# 4.定制刻度
ax.set_xticks([1,2,3,4,5,6,7])
ax.set_xticklabels(['周一','周二','周三','周四','周五','周六','周日'])
ax.tick_params(direction='in', width=2, length=8) # 刻度线样式调整
ax.xaxis.set_tick_params(labelrotation=20) # 刻度标签旋转角度调整
# 5.设置轴标签
ax.set_xlabel('周日期',labelpad=15)
ax.set_ylabel('收盘价(¥)',rotation=0,labelpad=35)
# 6.隐藏上轴脊和右轴脊
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
# 7.展示图表
plt.show()
运行结果: