关于构造法(C++)

为什么会写这一篇博客呢?哈哈,是因为我今天偶然看到了一篇文章,上面有一道蓝桥杯的基础题目——好数。

题目如下:

一个整数如果按从低位到高位的顺序,奇数位(个位、百位、万位 · · · )上 的数字是奇数,偶数位(十位、千位、十万位 · · · )上的数字是偶数,我们就称 之为“好数”。 给定一个正整数 N ,请计算从 1 到 N 一共有多少个好数。 

【输入格式】一个整数 N 

【输出格式】一个整数代表答案

【样例输入】24

【样例输出】7

【样例说明】24 以内的好数有 1 、 3 、 5 、 7 、 9 、 21 、 23 ,一共 7 个

【评测用例规模与约定】

对于 10 % 的评测用例, 1 ≤ N ≤ 100 

对于 100 % 的评测用例,1 ≤ N ≤ 10e7

分析:这一题乍一看也没什么,数据也不是很大,仅仅10e7,我们直接暴力遍历1~N所有数字,然后逐个判断是不是好数就可以了——当然,这也是我最初的想法。诶,但是!我转念一想,感觉这里面有很大的猫腻,假设N为10e7,最坏时间复杂度怎么判断呢?最坏每个数字遍历8次,最好1次,平均一下4次,OK,那么时间复杂度就应该是10e7*10e4=10e11,也就是100亿,我微微一笑,心想这肯定超时,是时候拿出我的看家本领了——构造法。可惜的是,我瞟了一眼答案,居然就是暴力枚举,代码如下:

#include <iostream>
using namespace std;
bool isGoodNumber(int num) {//判断函数
    int digit = 1;
    while (num > 0) {//内层循环对每个数字进行判断
        int current_digit = num % 10;
        if ((digit % 2 == 1 && current_digit % 2 == 0) || (digit % 2 == 0 && current_digit % 2 == 1)) {
            return false;//如果不满足规则,直接返回false
        }
        num /= 10;
        digit++;
    }
    return true;
}
int main() {
    int N;
    cin >> N;
    int count = 0;
    for (int i = 1; i <= N; i++) {//暴力枚举
        if (isGoodNumber(i)) {
            count++;
        }
    }
    cout << count << endl;
    return 0;
}

代码很好理解,我就不在这里赘述了。但是大家想想我一开始的思考为什么错了呢,原来,内层循环的平均次数不能直接用(8+1)/ 2来计算,原因有二:

其一:循环为8次仅有一个1e7,并不具有代表性,当然,这只是一个很小的原因。

其二:我们仔细看一下上面代码的判断函数,不难发现,我们每进入一次内层循环,就立刻检查是否满足规则,如果发现不满足规则,立刻返回结果,而无需进行下一步的判断,这一操作无疑大大降低了耗时,使之成为一个优秀的可行代码。

呃呃,这不是我们今天的重点,我们今天的主角是我上面提到的构造法。

什么是构造法呢?顾名思义,就是按照规则构造出我们需要的数字、结构等,而无需暴力枚举所有可能的结果。有点类似于反向解决问题,题目不是问有多少个吗?我直接给你构造出来,能构造出来多少就有多少个呗。构造法在求解一些规则明显、易操作的问题时展现出了巨大的优势。

基于构造法思想,我们有了如下代码(只是构造结果的一个示例代码):

//构造法求好数
#include <iostream>
#include <cmath>
using namespace std;
int n, cnt;
void make1(int k,long long  now,int flag);
void make2(int k,long long  now,int flag){//构造偶数位
	if (now > n)return;
	cnt++;//构造偶数位无需判断,因为判断的是前一位构造后的结果,最高位为奇数不可能为0
	for (int i = 0;i <= 8;i+=2){
		if (!i)make1(k + 1,now,1);
		else make1(k + 1, i * pow(10, k) + now, flag);
	}
}
//k为第几位,从0(个位)开始,now为现在的结果,flag用于判断最高位是不是0
void make1(int k,long long now,int flag){//构造奇数位
	if (now > n)return;//越界,直接返回
	if (flag)flag = 0;//如果最高位为0,cnt不++
	else cnt++;//否则,cnt++
	for (int i = 1;i <= 9;i += 2){//构造
		make2(k + 1, i * pow(10, k) + now,flag);
	}
}
int main(){
	cin >> n;
	make1(0,0,0);
	cout << cnt-1 << endl;//cnt-1是因为第一次进入make1时cnt会多加一次
	return 0;
}

然后,经过测试,我发现在N最大为1e7时它并不比暴力枚举快多少,真正展现出优势的数据范围为1e8~1e9,但是,我想强调的是构造法的原理,它是帮助我们理解代码世界运行规则的一种很重要的思想,理解了它,相信你会对编程语言有一个更深的理解。

今天的分享就到这里,谢谢观看,如果喜欢,记得关注哦!

  • 24
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值